
INTRODUCTION
This series of articles is about writing your
own web services server and client in Delphi.
The approach of all articles is pragmatic.
This first article introduces some of the
concepts you need to know and shows you
how to create and consume your own web
service in Delphi.

What is a web service? A web service sends
and receives data over the world wide web.
Web services mostly communicate over the
internet through the HTTP protocol and send
and receive data in one of the web formats,
such as JSON, XML or HTML.

Why would you want to build a web service?
Web services are used in almost every app,
website and desktop application to get local
and remote data. Web services are also used
for interoperability and import and export. For
instance accounting software usually has an
interface to its locally or remotely stored data
using a local or remote web service. Web
services are also easily scalable. Start with a
simple locally run web service on a laptop and
then scale up into a server park or into the
cloud.

In a sense even a website is a web service.
When you open an URL
(https://www.blaisepascalmagazine.eu/
) in your web browser the browser sends a
HTTP GET command to the website URL and
in response receives data in the form of a
HTML page.

However, when software developers mention
web services, they mostly mean a web service
that uses REST (REpresentational State
Transfer) over HTTP to send and receive JSON
formatted data. For instance the DuckDuckGo
API that resolves your question into a direct
answer from WikiPedia, GitHub and more. Just
try this link in your browser
https://api.duckduckgo.com/
?q=Blaise&format=json&pretty=1

When you access a web service you supply an
URL combined with an identifier into an URI
for a specific resource.

URL - Uniform Resource Locator
This is the human readable address that a
resource (a web service) can be found at. An
example would be https://duckduckgo.com/.
It’s translated to a physical IP address through
DNS. This way the resource can be located
over a TCP/IP network. In analogies an URL
would be the home address for the house
where your resource lives.

URI - Uniform Resource Identifier
There is also a thing called URI. This identifies
a specific resource. If you just go with the idea
that this adds a specific resource identifier to
retrieve from the URL location, you’re not far
off. An example of an URI is
https://duckduckgo.com/index.html. In
analogies the URI would be a specific
bookcase inside the house.

URL vs URI
It's fun to debate what is or isn’t an URL, or an
URI, because the definition in the RFC
documents leaves some of it open to different
interpretations. So you may get into a
discussion at the coffee machine on URL vs
URI, after which you can relax with your cup of
coffee, as it really doesn't matter. It’s just the
location of your web service.

The protocol used is HTTP, denoted by the
prefix http:. Even if the URL has HTTPS in its
prefix this is still talking HTTP, it’s just
encrypted.

HTTP - Hyper Text Transfer Protocol
HTTP is the protocol used to communicate
over TCP/IP with your web service. In analogies
HTTP is a very limited language used to
exchange data.

HTTP has nine commands that are used to
request and receive data. Each of these
commands has a specific purpose. For web
services there are four commands you should
start with.

WEB SERVICE PART 1
expertstarterBy Danny Wind

1Blaise Pascal Magazine 92 2021

Page 1/10

HTTP GET Retrieves data from the resource
idempotent, cacheable
usage in our web service SELECT
 (get existing record, disallow caching so we get new
 data each time)
HTTP POST Appends data to the existing resource
not idempotent, not cacheable/stale
usage in our webservice UPDATE existing
 (partial update of fields in a record,
 not updating the primary key)
HTTP PUT Replace the existing resource or inserts data as
idempotent, not cacheable/stale a new resource
usage in our web service INSERT new (or REPLACE)
 (insert new record with new primary key,
 or replace entire record)
HTTP DELETE Deletes the resource
idempotent, not cacheable/stale
usage in our web service DELETE
 (delete existing record or return error if it doesn’t exist)

In our article we will use a simplified mapping
of HTTP commands to actions we want our
web service to perform. For more complete
mapping you could take a look at some of the
open source REST web service frameworks
available.

Some Open Source web service frameworks
MARS Curiosity Framework:
https://github.com/andrea-magni/MARS

mORMot ORM Framework
https://github.com/synopse/mORMot

WiRL RESTful library
https://github.com/delphi-blocks/WiRL

We will not be using these existing frameworks,
instead we will be building a simple web
service server and client from scratch.

STARTING THE BUILDING OF THE PROGRAM
on the next page we will create the web service
client.

Figure 1: The Web Service Client to be build

2Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 2/10

Start with either a VCL or FireMonkey application
1. Add a Panel and align Top
2. Add a Button to this Panel and rename to ButtonGet, align Right
3. Add an Edit to this Panel and rename to EditURL, align Client
4. Add a Memo to the Form and align Client
5. Add a to the FormNetHTTPClient

6. Add a to the Form and link the Client property to NetHTTPRequest NetHTTPClient

7. Add an event-handler to the OnClick ButtonGet

8. The request is executed asynchronously, which means the HTTP GET

 response will appear at some time in the future. When the response arrives the
 event-handler of the will be called.OnRequestCompleted NetHTTPRequest

9. Add an event-handler to the OnRequestCompleted NetHTTPRequest

 . (: ;procedure constTFormMain NetHTTPRequestRequestCompleted Sender TObject
 :);const AResponse IHTTPResponse
begin
 . := . ;MemoResponse Text AResponse ContentAsString
end;

10. Run and test using a website URL, for instance

https://www.blaisepascalmagazine.eu/

11. The GET will return a HTML page

 . (:);procedure TFormMain ButtonGETClick Sender TObject
begin
 . := ;NetHTTPRequest MethodString 'GET'

 . := . ;NetHTTPRequest URL EditURL Text
 . ();NetHTTPRequest Execute
end;

3Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 3/10

Figure 2: The result of the GET order event

12. When you use an URL to a REST endpoint from an existing Web Service,
 you get JSON data. Try this URLs in the Web Service Client

https://api.discogs.com/artists/457265

13. The result is JSON data, recognizable due to the curly braces {}

14. The next step is to create our own Web Service Server

4Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 4/10

Figure 3: The result is JSON data

Figure 4: The Web Service Server Gui

15. We start with the New Item wizard for Web | Web Server Application

16. This will allow you to create a web server that runs standalone or as a library in Apache (Linux)
 or IIS (Windows). It will process HTTP requests and you can write the code on how it should
 respond, with plain text, a JSON string, HTML page or even an image or a file.

17. For now we go with Windows. We can add Linux support later on.

5Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 5/10

Figure 5: starting with the Web Server Appication: Ú ÚNew Other Web

Figure 6: Standard for Windows

18. For now we create a stand-alone GUI application. If we run this wizard
 again later on we can combine these options into one Project Group and
 share the base code files between these options.

19. VCL is OK

6Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 6/10

Figure 7: Select the type of WebBroker

Figure 8: VCL

20. Test if the default port is not already taken on your machine.
 If it is you can Find Open Port or just try another port, such as 8088 or 8888.
21. Save the files into a separate directory and save the Project as WebServiceServerGUI

7Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 7/10

Figure 9: The port number

Figure 10: Run the Web Service Server GUI

22. Run the Web Service Server GUI
23. Click on Start, this should open the Windows Firewall configuration, depending on your
 local network configuration (Private or Public) you can choose to open the port for
 private networks only or for public networks (if you have your computer configured as
 such). Please note that when opening it up for public networks would mean the port is
 also open when you visit an airport.

24. Make note of the URL that is then opened in the web browser

25. Run the Web Service Client and open this URL.
26. The :8080 in this URL is the internet port. An internet port is like a door, each door has its
 own number. If the port is opened in the firewall, traffic is allowed through.
27. The localhost in this URL translates to a loopback to this machine. It’s translated to a local
 IP address (127.0.0.1) that points to the machine you are running on.

http://localhost:8080/

8Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 8/10

Figure 11: The Windows Firewall config

Figure 12: Run the Web Service Client and open this URL.

28. This is the default handler for the Web Server Service
29. Let’s add a new GET handler to the Web Server Service
30. Open the Web Server Service GUI project and open the WebModuleUnit

31. HTTP requests to the Web Server are mapped to WebActionItems (Action Handlers).
 Add a new WebActionItem by clicking the three-dots in the property Actions

9Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 9/10

Figure 13: WebModuleUnit

Figure 14:

 . (: procedure TWebModule1 WebModule1WebActionItemNumberGetAction Sender
TObject;

 : ; : ; :);Request TWebRequest Response TWebResponse Handled Booleanvar
begin
 . := ;Response ContentType 'application/json; charset=UTF-8'

 . := (). ;Response Content Random ToString100
end;

32. Modify MethodType to mtGet and PathInfo to /Number
33. Add an OnAction event-handler to this WebActionItem and code a response

34. Run the Web Service Server, and Start it with the Button
35. Now open the Number URL in the Web Service Client
 http://localhost:8080/Number

36. Request a couple of random numbers in the Web Service Client

10Blaise Pascal Magazine 92 2021

WEB SERVICE PART 1 Page 10/10

Figure 15: Opening the Number Url

37. By the way, this is valid JSON, because a Number is a primitive
 datatype is where no encapsulation or serialization is needed.

Figure 16:

38. See here also for a brief description of JSON structures
https://www.json.org/json-nl.html

You already have the basis for your own Web Service. You can use this code for example to use the
values from your own weather station via GET requests available and displayed in an Android App.

In the following articles, we will change data in the Web Service by adding a PUT, POST and DELETE.
We will also use more complex JSON structures.

You can download the source code for this article from your subscription webpage:
https://www.blaisepascalmagazine.eu/your-downloads/

WEB SERVICE PART 2 - STORAGE
expertstarterBy Danny Wind

This series of articles is about writing your own
web services server and client in Delphi. The
approach of all articles is pragmatic. The first
article introduced some of the concepts you
need to know and shows you how to create and
consume your own web service in Delphi with
just the GET request. This second article shows
you how to update the data in the web service
and how to create in-memory storage for the
web service.

In the previous article we only used the HTTP
GET request to return data from our web
service. This time we will add the other three
HTTP commands to our web service.

Page 1/12

HTTP GET Retrieves data from the resource
idempotent, cacheable
usage in our web service SELECT
 (get existing record, disallow caching so we get new
 data each time)
HTTP POST Appends data to the existing resource
not idempotent, not cacheable/stale
usage in our webservice UPDATE existing
 (partial update of fields in a record,
 not updating the primary key)
HTTP PUT Replace the existing resource or inserts data as
idempotent, not cacheable/stale a new resource
usage in our web service INSERT new (or REPLACE)
 (insert new record with new primary key,
 or replace entire record)
HTTP DELETE Deletes the resource
idempotent, not cacheable/stale
usage in our web service DELETE
 (delete existing record or return error if it doesn’t exist)

1

Before we do that however we need to know
what the idempotent and cacheable
properties of the HTTP commands mean for
our web service.
Idempotency means that after the first
request a second (or third and so on) request
of an idempotent method should yield the
same effect, unless there is an error or it has
expired.

The cacheable property means that a
requester is allowed to cache a request. So
instead of sending a repeated request to the
server again, it can just return a cached result.
Both idempotency and cacheable combined in
the GET request means that a web client that

consumes your web service could be caching
requests. It’s easy to notice when you run into
this.

If you get the same result from a GET request,
even if the data in the server has changed, then
your web client is caching. Taking a look at
network traffic helps as well. If the web client
only generates network traffic on the first net
request, you know what’s happening. It’s easy
to prevent this type of caching behaviour, by
setting the Cache-Control and Expires elements
in the HTTP header. Remember this if you’re not
getting the new data that you want to get from
your GET.

IDEMPOTENT METHODS (RFC definition)
Methods can also have the property of "idempotence" in that
(aside from error or expiration issues) the side-effects of N > 0
identical requests is the same as for a single request. The
methods GET, HEAD, PUT and DELETE share this property.
Also, the methods OPTIONS and TRACE SHOULD NOT have
side effects, and so are inherently idempotent.

However, it is possible that a sequence of several requests is
non- idempotent, even if all of the methods executed in that
sequence are idempotent. (A sequence is idempotent if a
single execution of the entire sequence always yields a result
that is not changed by a reexecution of all, or part, of that
sequence.) For example, a sequence is non-idempotent if its
result depends on a value that is later modified in the same
sequence.
A sequence that never has side effects is idempotent, by
definition (provided that no concurrent operations are being
executed on the same set of resources).

-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 93 2021

2

WEB SERVICE PART 2 - STORAGE Page 2/12

Looking at PUT, you see that PUT is considered
idempotent and not-cacheable. So the same
PUT request, when repeated, should yield the
same result. However PUT is not considered
cacheable, so if you PUT a resource, then
DELETE that resource from another location and
PUT it again it will result in the new resource.
The second PUT is not cached on the client-
side, it’s always considered stale and thus sent
to the server. In short, if you PUT something
twice it should always successfully replace the
existing resource. Your PUTs won’t disappear.

For POST the defined behaviour is a bit
different, as POST is not idempotent. So if you
want to update a resource it could work the first
time, but if someone else uses DELETE on that
resource a subsequent POST (append) to the
same resource could yield an error or just fail.

HTTP Commands
A good thing to know is that the definition of the
HTTP commands in RFC allows for multiple usage
scenarios of each command.
Because there is some leeway between definition
and interpretation of its usage for PUT and POST in
web services it's perfectly valid for us to create a
web service that uses PUT as an equivalent for
INSERT or REPLACE and POST as an equivalent for
an UPDATE.

There is an interpretation that wants you to use
POST to get data, when the GET request
manipulates the data on the server. In our web
service we return a random number with a GET
request, and this interpretation would suggest
using POST instead, as a POST is not idempotent
and is allowed to change the server state.

Nevertheless in this article we will continue using
GET with Cache-Control and Expires elements in
the returned HTTP header to prevent caching.

Before we start coding and add PUT, POST
and DELETE methods to our web service, let’s
first expand our toolkit and introduce the REST
Debugger. This is a handy tool that comes
bundled with the Delphi IDE. You can use it to
test and debug your web service. You can find
the REST debugger in the Delphi IDE under
Tools Ú REST Debugger.

Let’s run the REST Debugger and use it to test
the web service we created in the previous
article. We can use the GET request for Number.

-est 1998-

THE DELPHI COMPANY

http://localhost:8080/Number

Figure 1: Tools Ú REST Debugger

Blaise Pascal Magazine 93 2021

3

Figure 2:

In the REST Debugger we can see that the returned Content-Type = application/json
and if we open the tab Body we see that the returned JSON is valid.

WEB SERVICE PART 2 - STORAGE Page 3/12
-est 1998-

THE DELPHI COMPANY

Figure3: Result

Blaise Pascal Magazine 93 2021

4

We are now ready to add some new methods to
our web service.

OPEN THE WEB SERVER SERVICE
() we created in the WebServiceServerWithGUI

previous article in Delphi. It’s compatible with
either Delphi 10 Community, Delphi 10
Professional, Enterprise or up.

2. In the OnAction event-handler for this new
 item code a test response in the format of
 a JSON string.

3. Run the web service again, click the Start
 button and start the REST Debugger and
 test if your web service still works and a GET
 request of this URL yields the expected
 valid JSON result.

The next step is creating an actual Key Value
store in-memory to hold the data for this web
service. We will be using a generic TDictionary
to store the Key Value pairs.
To safely and successfully use this in-memory
Key Value store we need to know how the
WebModule handles incoming requests. A Web
Broker application has only one WebModule
class variable as you can see in the interface
section of the WebModuleUnit

 var
 : = ;WebModuleClass TComponentClass TWebModule1

However for each
request a new
WebModule instance
may be instantiated
and each request is
handled in its own
thread. For us this
means we will need to
serialize access to our
in-memory Key Value

http://localhost:8080/KeyValue

procedure . (TWebModule1 WebModule1WebActionItemKeyValueGETAction
 : ; : ; : ;Sender TObject Request TWebRequest Response TWebResponse
 :);var Handled Boolean
begin
 . := ;Response ContentType 'application/json; charset=UTF-8'

 . := ;Response Content '{"message":"it works"}'

end;

store to make it thread safe. Also the Key Value
store will be created as a global variable to make
it accessible to all WebModule instances.

4. Declare the gLock and
 gKeyValueStore variables and add
 System.Generics.Collections and
 System.SyncObjs to the uses
 clause of your WebModule Unit.

WEB SERVICE PART 2 - STORAGE Page 4/12
-est 1998-

THE DELPHI COMPANY

x

w

v

u In the WebModuleUnit edit the Actions
 property and add a new handler with name
 WebActionItemKeyValueGET, MethodType
 mtGet and pathinfo /KeyValue. Figure 4:

Figure 5: Response

Blaise Pascal Magazine 93 2021

5

. At the end of the WebModule unit add an
 initialization section where you create both
 the locking object and the Tdictionary.

initialization

 := . ;gLock TObject Create
 := < , >. ;gKeyValueStore TDictionary Createstring string
 . (,);gKeyValueStore AddOrSetValue '0' 'Zero'

end.

We now have an in-memory Key Value store. To

retrieve a value in response from a HTTP GET

request we need to do some additional legwork.

First we need to parse the parameters in a HTTP

request for our resource identifiers. In a HTTP

request to a REST webservice a parameter is

usually sent by using additional URL segments. So

to get the Value for Key 0 in the KeyValue resource

you’d use a URI like this

For REST web services using URL segments is
the preferred and also the most simple method.
But if you want to you can also support
specifying them as URL query parameters,
starting with the question mark and separated
by ampersands.

This second method is already supported in the
TWebRequest with the QueryFields method, but
to support using the preferred URL segment
parameters we need to add a bit of
code as well as change the PathInfo
of the Item for the KeyValue GET.

 Modify the PathInfo for the
 WebActionItem for the
 KeyValue GET, and add a * at
 the end like this (see figure 6)

This * makes sure that any URL that
starts with /KeyValue, but continues with
additional URL segments actually ends
up in this WebActionItem handler. So
http://localhost:8080/KeyValue/0
is now also handled by this action
handler.
 Next we create a function to parse
 both the URL query parameters as
 well as the URL segment
 parameters. Add a protected
 function declaration to the
 WebModule.

 private
 { Private declarations }
 protected
 (, function constGetParameters aActionPath
aRequestPath TStringDynArray:): ;string
 public
 { Public declarations }
 ;end

 : = ;var WebModuleClass TComponentClass TWebModule1

implementation

{%CLASSGROUP 'System.Classes.TPersistent'}
{$R *.dfm}

uses
 . , . . , . ;System StrUtils System Generics Collections System SyncObjs

var
 : ;gLock TObject
 : < , >;gKeyValueStore TDictionary string string

http://localhost:8080/KeyValue/0

http://localhost:8080/KeyValue?key=0

 And write the following code to parse both
 types of parameters from the URI

function const . (,TWebModule1 GetParameters aActionPath
 :): ; aRequestPath TStringDynArraystring
var
 , : ; lActionPathLength lRequestPathLength Integer
 : ; lParameter string
 : ; lParameters TStringDynArray
begin
 (,); SetLength Result 0
 := . ; lActionPathLength aActionPath Length
 := . ; lRequestPathLength aRequestPath Length
 (>) if thenlRequestPathLength lActionPathLength
 begin
 := (, lParameter RightStr aRequestPath
 -);lRequestPathLength lActionPathLength
 := (,); lParameters SplitString lParameter '/'

 (() >) if thenLength lParameters 0
 begin
 := ; Result lParameters
 end
 ; end
end;

WEB SERVICE PART 2 - STORAGE Page 5/12
-est 1998-

THE DELPHI COMPANY

y

z

{

|

Figure 6: Response

Blaise Pascal Magazine 93 2021

6

procedure . (TWebModule1 WebModule1WebActionItemKeyValueGETAction
 : ; : ; : ; :); Sender TObject Request TWebRequest Response TWebResponse Handled Booleanvar
 {GET - "Select" / Idempotent}
var
 : ; , : ; lParameters TStringDynArray lKey lValue string
begin
 := ; lKey ''

 {parse URL query parameters - http://localhost:8080/KeyValue?key=0}
 := . . [];lKey Request QueryFields Values 'key'

 (.) if thenlKey IsEmpty
 begin {parse URL segment parameters - http://localhost:8080/KeyValue/0}
 := ((). , .); lParameters GetParameters Sender TWebActionItem PathInfo Request PathInfoas
 (() >) if thenLength lParameters 0
 begin
 := []; lKey lParameters 0
 ;end
 ; end
 (.) if not thenlKey IsEmpty
 begin
 . := ; Response ContentType 'application/json; charset=UTF-8'

 . (,); gKeyValueStore TryGetValue lKey lValue
 (.) if not thenlValue IsEmpty
 begin // {"result":["string"]}
 . := + + ;Response Content lValue'{"result":["' '"]}'

 end
 else
 begin // {"error":"Item not found"}
 . := ; Response Content '{"error":"Item not found"}'

 ; end
 := ; Handled True
 end
 else {No parameters on URL for GET request}
 := ; Handled False
end;

 Then modify the OnAction event-handler for
 the WebActionItemKeyValue GET Action

Test if this works, either with the REST debugger
or using the web browser. The results should
look like this.

WEB SERVICE PART 2 - STORAGE Page 6/12
-est 1998-

THE DELPHI COMPANY

}

Figure 7: Zero

prefered

Blaise Pascal Magazine 93 2021

7

Our next major step is to add both a PUT and a POST handler.
When data is sent to a web service, the data can be sent as part of a URL segment like this
http://localhost:8080/KeyValue/1/One but his method has some limitations, one obvious one
being that not all characters are allowed in URL segments as they have a special meaning. If you want
to send larger or more complex items you would use the HTTP requests body. We want to support
both methods of sending data to our web service.

 Add a PUT handler to the WebModule unit, with method type mtPut.

 Then code the handler

 . (procedure TWebModule1 WebModule1WebActionItemKeyValuePUTAction
 : ; : ; : ; Sender TObject Request TWebRequest Response TWebResponse
 :); var Handled Boolean
 {PUT - "Insert or Update" / Idempotent}
var
 : ; lParameters TStringDynArray
 : ; lKey string
 : ;lValue string
begin
 := ((). , .); lParameters GetParameters Sender TWebActionItem PathInfo Request PathInfoas
 (() >) if thenLength lParameters 0
 begin
 := []; lKey lParameters 0
 := ; lValue ''

 (() >) if thenLength lParameters 1
 begin {Value is part or URL and a simple string}
 := [] lValue lParameters 1
 end
 else
 begin {Value is send as content in the request and possibly a JSON or other complex string}
 := . ; lValue Request Content
 ; end
 (.) if not thenlValue IsEmpty
 begin
 . := ; Response ContentType 'application/json; charset=UTF-8'

 . (,); gKeyValueStore AddOrSetValue lKey lValue
 . := ; Response Content ' {"result":[]}'

 := ; Handled True
 end
 else
 begin
 := ; Handled False
 ;end
 end
 else
 begin
 {Do not reply}
 := ; Handled False
 ; end
end;

WEB SERVICE PART 2 - STORAGE Page 7/12
-est 1998-

THE DELPHI COMPANY

~

Figure 8: Actions

Blaise Pascal Magazine 93 2021

8

Now test this new PUT method and insert
some data into your webservice using the
REST Debugger.

And request the new item to see if it was
saved correctly.

WEB SERVICE PART 2 - STORAGE Page 8/12
-est 1998-

THE DELPHI COMPANY

Figure 9: Result

Figure 10: Result One

Blaise Pascal Magazine 93 2021

9

At first glance the result might seem odd, but
that is because the result in this case is
returned as a JSON array, and the first item of
an array has index 0. If you look at it in the
REST debugger you’ll see that this is valid
JSON.

 We will do the same for POST. We add a
 handler and use method type mtPOST.

WEB SERVICE PART 2 - STORAGE Page 9/12
-est 1998-

THE DELPHI COMPANY

Figure 11: Result One

Figure 12: Post

Blaise Pascal Magazine 93 2021

10

 And the code

 . (procedure TWebModule1 WebModule1WebActionItemKeyValuePOSTAction
 : ; : ; : ; Sender TObject Request TWebRequest Response TWebResponse
 :); var Handled Boolean
 {POST - "Update"}
var
 : ; lParameters TStringDynArray
 : ; lKey string
 : ; lValue string
begin
 := ((). , .); lParameters GetParameters Sender TWebActionItem PathInfo Request PathInfoas
 (() >) if thenLength lParameters 0
 begin
 := []; lKey lParameters 0
 := ; lValue ''

 (() >) if thenLength lParameters 1
 begin {Value is part or URL and a simple string}
 := [] lValue lParameters 1
 end
 else
 begin {Value is send as content in the request and possibly a JSON or other complex string}
 := . ; lValue Request Content
 ; end

 (.) if not lValue IsEmpty
 then
 begin
 . := ; Response ContentType 'application/json; charset=UTF-8'

 [] := ; gKeyValueStore lKey lValue
 . := ; Response Content ' {"result":[]}'

 := ; Handled True
 end
 else
 begin
 := ; Handled False
 ; end
 end
 else
 begin
 {Do not reply}
 := ;Handled False
 ; end
end;

Test it with the REST Debugger. First add an
item with Key 1 and Value One and then
update this existing item using POST, changing
the Value to something other than One. In my
example I used Een, which is the dutch word
for One. You probably never guessed you’d
learn a dutch word from reading this article.

WEB SERVICE PART 2 - STORAGE Page 10/12
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 93 2021

11

And a request in the web browser to verify it
worked.

At this point you may have already run into a
potential issue we just introduced when
adding the method. What happens if you POST

try to a Value for a non-existing key?POST

Just try it out with the REST Debugger.
We need to improve on this, but we will do so
in our next article.

 Our last will be theHTTP Command

 Just add it to the handlers as DELETE.

 before, this time with mtDELETE.

WEB SERVICE PART 2 - STORAGE Page 11/12
-est 1998-

THE DELPHI COMPANY

Figure 13: Post

Figure 14: Result: Een

Blaise Pascal Magazine 93 2021

12

procedure . (: ; : ; TWebModule1 WebModule1WebActionItemKeyValueDELETEAction Sender TObject Request TWebRequest
 Response TWebResponse Handled Boolean: ; :);var
 DELETE - "Delete"}
var
 : ; lParameters TStringDynArray
 : ; lKey string
begin
 := ((). , .); lParameters GetParameters Sender TWebActionItem PathInfo Request PathInfoas
 (() >) if thenLength lParameters 0
 begin
 := []; lKey lParameters 0
 . (); gKeyValueStore Remove lKey
 . := ;Response ContentType 'application/json; charset=UTF-8'

 . := ; Response Content '{"result":[]}'

 := ; Handled True
 end
 else {No parameters on URL for GET request}
 := ;Handled False
end;

You may have noticed that we left out URL query
parameter parsing in the PUT, POST and
DELETE. This was intentional, as using URL
segment parameters is the preferred method for
a REST web service. However due to the
limitations of URL segment parameters, you
may wish to add URL query parameters for the
PUT/POST and DELETE as well. This could be
done quite easily with a duplicate of the sample
code from the GET request handler.

A short recap of the things we have done in this
article. We created a GET request that correctly
parses both URL query parameters and URL
segment parameters and returns a value from
the in-memory Key Value store. We also created
PUT and POST requests that handle passing
content as part of the URL segment, for short
values, as well as from the HTTP content
stream, for larger more complex values.

As a teaser we also added a gLock object, but
we did not actually write any code for it. We
will do that in our next article, where we’ll add
some code to make sure any access to our in-
memory Key Value store is handled in a thread
safe manner. In that next article we will also
add error handling and of course expand our
Web Service client to consume our web
service. There might even be some JavaScript
code to consume our web service and further
on some additional JSON serialization. Stay
tuned!

 The code is straightforward:

WEB SERVICE PART 2 - STORAGE Page 12/12

Figure 15: mtDelete

-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 93 2021

WEB SERVICE PART 3 - CLIENT
By Danny Wind

Page 1/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

The Delphi web service client we created in
the previous article looked like this

expertstarter

This series of articles is about writing your own web services server
and client in Delphi. The approach of all articles is pragmatic.

The first article introduced some of the concepts you need to know
and shows you how to create and consume your own web service in
Delphi with just the GET request.

The second article showed you how to update the data in the web
service and how to create in-memory storage for the web service.

This third article shows you how to consume and use your web
service from both Delphi clients on Windows and from a web page
with JavaScript.

It also adds error handling and tweaks some code on the web
service which were left as teasers in the previous article.

The web service from the previous article is a functional web service
that uses the HTTP commands GET, POST, PUT and DELETE to get,
update, insert or delete items in a key value store.
The key value store holds string keys and string values, and can be
used to store JSON or other string based data.
The REST endpoint we defined was
http://localhost:8080/KeyValue

and we can GET or DELETE a value for a given key using parameters
in the URL segment.
http://localhost:8080/KeyValue/0

Similarly we can POST (update existing) or PUT (insert or replace)
data
http://localhost:8080/KeyValue/1/One

but remember that you need to send a POST or PUT HTTP
command, which you can do with the REST debugger.
Just opening the above link in a browser would send a GET HTTP
command.
The PUT and POST also allow for sending large or complex data
within the body of the request instead of using the URL segment.

97

WEB SERVICE PART 3 - CLIENT
By Danny Wind

Page 2/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

expertstarter

and we will use this web service client as a
starting point for our next steps to create a
web service client with POST, PUT and
DELETE which looks like this:

procedure . (:);TFormMain ButtonPUTClick Sender TObject
var
 : ;lContentStream TStringStream
begin
 { Encode string stream as UTF8 }
 := . (. . , .);lContentStream TStringStream Create MemoBody Lines Text TEncoding UTF8
 . (, .);lContentStream Seek TSeekOrigin soBeginning0
 . (. , , ,);NetHTTPRequest Put EditURL Text lContentStream nil nil
end;

In this code we use the body of the request HTTP

to send our data with the NetHTTPRequest.Put.

We could also have added it as a URL segment
parameter in the , but that would EditURL.Text

have more limitations,

Open the previous Web Service Client

u Add a GridPanel under the GET button

 (you can move components around in the
 , left in the IDE)Structure Viewer

v Set the of the to Align ButtonGet None

 Anchors and the to empty

w Add three additional Buttons to this
 and rename them to GridPanel
 ButtonPost,ButtonPut, ButtonDelete

x Temporarily set of Align MemoResponse

 to and move it downNone

y Add a Memo to the Form, place it between
 the and the Edit and thenMemoResponse
 align Top

z Set of MemoResponse back to ClientAlign

{ Add an event-handler on theOnClick

 to add the code to or Button Put Insert

 a value in the web serviceReplace

98

WEB SERVICE PART 3 - CLIENT Page 3/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

in size and in the supported or allowed
characters. Because we use a stream, we also
need to manually encode the text from the
Memo into which is the default for UTF-8

sending string data to a web service.
This is also more efficient than the Windows
default encoding, resulting in an up to UTF-16

50% smaller content.

| Test if it works by running the web service
 server from the previous article. You can
 also use the completed version of the web
 service server from this article

} Use the following URL to place a valuePUT

 in key 1 and then use to retrieve it. GET

 The result in the web service client should
 look like this

~ how the carriage return - line feedsNotice

 have also been stored in the key value

 store and they result in multiple lines in the
 We should encode theseMemoResponse.

 special characters to conform to JSON

 standards to prevent other clients from
 rejecting our malformed JSON

99

WEB SERVICE PART 3 - CLIENT Page 4/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 To correctly store a string as a JSON string
 we need to add JSON string conversion for
 the control characters and enclose it in
 quotation marks. We use the function
 TJSONString.ToJSON(Options:

 TJSONOutputOptions) to convert the
 string into a JSON string. Modify the code
 as follows

procedure . (:);TFormMain ButtonPUTClick Sender TObject
var
 : ;lContentStream TStringStream
 : ;lJSONString TJSONString
begin
 { Encode string stream as UTF8 }
 := . (. .);lJSONString TJSONString Create MemoBody Lines Text
 := . (lContentStream TStringStream Create
 . ([. .]),lJSONString ToJSON TJSONAncestor TJSONOutputOption EncodeBelow32
 .);TEncoding UTF8
 . ;lJSONString Free
 . (, .);lContentStream Seek TSeekOrigin soBeginning0
 . (. , , ,);NetHTTPRequest Put EditURL Text lContentStream nil nil
end;

With this function the control ToJSON

characters below are encoded, U_001F (32)

where some of the special characters such as
carriage return and line feed are changed to \r

and . Note that I choose to use with \n ToJSON

only specified. I do not want EncodeBelow32

Unicode characters above 127 to be encoded
to , where is the hexadecimal \uxxxx xxxx

value of the UTF-16 characters, as that
would increase the length of our content.
Especially since the latest 2017 ietc
specification states that JSON interchange must
support all UTF-8 characters and escaping
normal UTF-8 characters is not necessary.
 We also need to change a bit of code in
the server, als the stored JSON string already
has its own quotation characters.
For the GET method we modify the code that
returns the JSON array and remove the quotes.
We assume that each stored value is valid JSON
on its own.

IETF - The Internet Engineering Task Force
specification of the JSON data interchange format
states:
“All Unicode characters may be placed within the
quotation marks, except for the characters that MUST
be escaped: quotation mark, reverse solidus, and the
control characters (U+0000 through U+001F).”
Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", STD 90,
RFC 8259, DOI 10.17487/RFC8259, December 2017,
<https://www.rfc-editor.org/info/rfc8259>.

100

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 . (,);gKeyValueStore AddOrSetValue '0' '"Zero"'

{this was gKeyValueStore.AddOrSetValue('0', 'Zero');}

 Also change the test value for key 0

 This is not totally foolproof, as it assumes
 anyone pushing data into the key value
 store adds valid but it's good JSON,

 enough for our simple web service.

 If we now test the service by storing
 the two lines we get this correct result in
 the browser

 . := + + Response Content lValue'{"result":[' ']}’

{ this was Response.Content := '{"result":["' + lValue + '"]}';}

 All looks OK, however if this looks strange
 to you, remember that we return a JSON
 array of values with one item (0) with the
 value for key 1
 Back to the client

procedure . (:);TFormMain ButtonPOSTClick Sender TObject
var
 : ; : ;lContentStream TStringStream lJSONString TJSONString
begin
 { Encode string stream as UTF8 }
 := . (. .);lJSONString TJSONString Create MemoBody Lines Text
 := . (lContentStream TStringStream Create
 . ([. .]),lJSONString ToJSON TJSONAncestor TJSONOutputOption EncodeBelow32
 .);TEncoding UTF8
 . ;lJSONString Free
 . (, .);lContentStream Seek TSeekOrigin soBeginning0
 . (. , , ,);NetHTTPRequest Post EditURL Text lContentStream nil nil
end;

 The code is the same as the PUT, with one
 additional condition that a POST to a
 non-existent key will fail with an internal
 error. Note that the web service server
 neatly translates such an internal exception
 to a HTML page

 The following code implements the POST
 functionality

Page 5/14

101

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 {existing code}
procedureTWebModule1 WebModule1WebActionItemKeyValuePOSTAction
 ...

 . := ;Response ContentType 'application/json; charset=UTF-8'

 [] := ;gKeyValueStore lKey lValue
 . := ;Response Content '{"result":[]}'

 := ;Handled True

 and modify it to return a formatted JSON

 error string if the key is not found in the key
 value store

 new code}
procedureTWebModule1 WebModule1WebActionItemKeyValuePOSTAction
 ...

 . := ;Response ContentType 'application/json; charset=UTF-8'

 . () if thengKeyValueStore ContainsKey lKey
 begin
 [] := ;gKeyValueStore lKey lValue
 . := ;Response Content '{"result":["OK"]}'

 end
 else
 begin
 . := ;Response Content '{"error":"Item not found"}'

 ;end
 := ;Handled True

 and instead of returning an empty JSON

 array, we now also return one array item
 with “OK”, making it easier to parse
 After this code change the result after a
 click on POST with a non-existent key
 should look like this

 Instead of this page I’d like it toHTML

 return a errorJSON

 Open the web service server and find
 the code that handles the in the POST

 unitWeb Module

Page 6/14

102

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 We go back to the web service client
 and we finish the client side code with
 the DELETE

procedure . (:);TFormMain ButtonDELETEClick Sender TObject
begin
 . (. , ,);NetHTTPRequest Delete EditURL Text nil nil
end;

 After which we have a fully functional web
 services client

The web services client adds values as JSON

strings, the web services server stores these
as-is and when requested returns the JSON

value as the first item in a array.JSON

Maybe at this point you are wondering why we
use a array to return just one item. JSON

That is because using an array is a flexible way
of returning items with We can use the JSON.

JSON iterator in a later article to parse for
multiple items, for instance if we request the
entire list, or if we want to return additional
items that describe the content of the value for
each key. We could put a value in the key value
store that is actually a encoded binary BSON

file with a descriptor that holds the file type
and return the descriptor, which could be a
MIME type, as an item as well.

On the subject of types, there is a small MIME

improvement you could make to the header
that is sent out by the server. It is currently just
a manual string

 . := ;Response ContentType 'application/json; charset=UTF-8'

but you could change it to
 . := + . . ;Response ContentType TEncoding UTF8 MIMEName'application/json; charset='

Page 7/14

103

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

This would result in almost the same string,

but would now be written in lower case.UTF-8

 'application/json; charset=utf-8'

Although using upper case is allowed, as the
charset specification is case-insensitive, the
default should be in lower case. I just made this
mistake when typing the article, as in normal text
I tend to use . UTF-8

Using instead TEncoding.UTF8.MIMEName

makes sure I don’t repeat that same mistake.

Another thing I forgot to mention was setting the
TNetHTTPRequest Asynchronous property to
True (default is False) in the web services client.
The code also works in synchronous mode, but it
is meant to be used asynchronously.

We also have some other things to do that we
didn’t get around to in the previous article. Let’s
revisit some code on the server side.

In our previous article we declared and created a
global lock variable, but we did not actually use
it. If you have Show Error Insight levels set to
“Everything” Tools-Options Delphi under in
10.4.2 you’ll get a visual indication the code is
incomplete if you open the unitWebModule

We will add this code soon, but first we dig
into the reason why we need to add a global
lock.
You may recall that a Web Broker application
only has one WebModule class variable as you
can see in the interface section of the
WebModule unit

 var
 : = ;WebModuleClass TComponentClass TWebModule1

However for each request a new WebModule
instance of this WebModuleClass type may be
instantiated and each incoming request is
handled in its own thread.

Page 8/14

104

WEB SERVICE PART 3 - CLIENT Page 9/14
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

Instantiation of is handled by the WebModules

WebRequestHandler. WebModule instances
(of the) are kept in a pool in WebModuleClass

the handler, if one instance is available the
WebRequestHandler will use that one, if not a
new one will be created.
Threading is handled by the Indy Server. HTTP

By default the handles each IdHTTPServer

request by creating its own new thread. If we
would create the web service server as ISAPI
or Apache the threading would be handled
there.

For us knowing that we have multiple
instances of used from multiple WebModules

threads at the same time, means we will need
to serialize access to our one global in-memory
Key Value store to make it thread safe. This is
where we will use the global lock variable
gLock as a companion lock object for the
TDictionary Tmonitor.in combination with

TMonitor is an excellent choice for locking in
multi-threaded applications. Internally
TMonitor first uses spin waits before actually
locking, which reduces context switching.
The lock flag is also built into each class in
Delphi through the base class. TObject

When locking an object it's good practice to
use a companion instance, instead of TObject

just locking the class directly.
This is because for some classes in the Delphi

RTL TMonitor is also used in its internal code.
Using on such a class could lead to TMonitor

deadlocks. Instead just declare a new TObject
variable, as we do in our code with gLock, to
lock access to the key value TDictionary.

 In each of the methods that access the
 store we add a lock by Key Value

 surrounding it with and TMonitor.Enter

 For the web action item Exit. GET

 handler the new code looks like this

105

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

Response ContentType. :=

 + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . (,) TMonitor Enter gLock 500
begin
 try
 . (,);gKeyValueStore TryGetValue lKey lValue
 finally
 . ();TMonitor Exit gLock
 ;end
end;

if not then (.) lValue IsEmpty
begin
 // {"result":[JSONValue]}
 . := + + Response Content lValue'{"result":[' ']}'

end
else
begin
 // {"error":"Item not found"}
 . := ;Response Content '{"error":"Item not found"}'

end;

Handled True := ;

Response ContentType TEncoding UTF8 MIMEName. := + . . ;'application/json; charset='

if then . (,) TMonitor Enter gLock 500
begin
 try
 . (); gKeyValueStore Remove lKey
 finally
 . (); TMonitor Exit gLock
 ; end
end;

 and the web action handlerPUT

The has a timeout TMonitor.Enter

parameter, if the lock is not acquired within
500 milliseconds it will return and the False

TryGetValue will not be executed.
Usually the lock will be acquired within < 1
ms, but if the store is busy from Key Value

multiple threads it may take longer and we do
not want to wait indefinitely. Instead getting
value will then fail and return a error with JSON

Item not found. Alternatively you could also
handle this with error codes as some HTTP

web services do.

 We add similar code for the webDELETE

 action item handler.

Response ContentType. :=

 + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . (,) TMonitor Enter gLock 500
begin
 try
 . (,); gKeyValueStore AddOrSetValue lKey lValue
 finally
 . (); TMonitor Exit gLock
 ; end
end;

Page 10/14

106

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

and the POST web action item handler

Response ContentType. :=

 + . . ;'application/json; charset=' TEncoding UTF8 MIMEName
if then . (,) TMonitor Enter gLock 500
begin
 try
 . () if thengKeyValueStore ContainsKey lKey
 begin
 [] := ;gKeyValueStore lKey lValue
 . := ;Response Content '{"result":["OK"]}'

 end
 else
 begin
 . := ;Response Content '{"error":"Item not found"}'

 ;end
 finally
 . ();TMonitor Exit gLock
 ;end
end;

Handled True := ;

 After which we have a fully functional web
 services server

This web services server does have some
limitations. Because it is using a globally
locked key value store its performance will
suffer as we get more simultaneous users. If
they mostly just data the penalty for GET

global locking is low as getting data out of a
dictionary based key value store is a O(1)
operation. It is very quick. However inserting
(PUT) (DELETE) or deleting data from the
key value store is somewhat slow as it needs
to (re)calculate hash values. If you have many
concurrent users that also write a lot I would
not use this setup, but instead just use a fast
database backend. Using a database backend
has the added benefit of persistence.
The current key value store holds values in
memory, after a reset of the web service the
data is gone. For simple web services that
need this type of transient storage this
approach works fine.

It's time to have some fun with our web
services server. Let’s add some to JavaScript

the mix.

In a previous article I wrote that a web
service is not that much different from
serving web pages from a web server.
In fact you can add web page producers
to the web service server we just wrote
and have it return a page. HTML

We have already seen that when it returned an
internal exception as a page. HTML

Page 11/14

107

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 In the handler we respond with a piece of
 with codeHTML JavaScript

<html>
<head><title>Call Number with JavaScript</title></head>
<body>Call Number with JavaScript
<button onclick="getNumber()">
Get Number in Console Log (view Ctrl-Shift-I).</button>
<script type="text/javascript">
function getNumber()
{ let url = 'http://localhost:8080/Number';
 fetch(url).then(resp=> resp.json().then(j=>
 console.log('\nNumber: ', j)));
}
</script>
</body>
</html>

 We add a new handler to theWebActionItem

 unit, use the WebModule URL /JavaScript

 and the method mtGet

Kind of like a roundtrip, where the web service
asks itself a question. This way we would let
the web services server serve a web page that
acts like a client to the same web JavaScript

service.

The default handler in the unit Web Module

does the same thing,it just returns some HTML.

This means that we could add an URL to the
web service server that would result in a
webpage with some and a piece of HTML

JavaScript that would in turn request data
from the same web service.

Page 12/14

108

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

The resulting Delphi code is this

procedure .TWebModule1 WebModule1WebActionItemJavaScriptAction
 (: ; : ; Sender TObject Request TWebRequest
 Response TWebResponse Handled Boolean: ; :);var
begin
 . :=Response ContentType
 + . . ;'text/html; charset=' TEncoding UTF8 MIMEName
 . :=Response Content
 +'<html>'
 +'<head><title>Call Number with JavaScript</title></head>'
 +'<body>Call Number with JavaScript '
 +'<button onclick="getNumber()">Get Number in Console Log (view Ctrl-Shift-I).</button>'
 +'<script type="text/javascript">'
 +'function getNumber() {'
 +' let url = ''http://localhost:8080/Number'';'
 +' fetch(url).then(resp=> resp.json().then(j=> console.log(''\nNumber: '', j)));'
 +'}'
 +'</script>'
 +'</body>'
 ;'</html>'
end;

 For web debugging I usually use either

 or you can start the webFirefox Chrome,

 debugging with the key combination

 Ctrl-Shift-I

 Run the web services server, click the Start

 button, then the Browser button and open

 the JavaScript URL

 The result after clicking the t button JavaScrip

 on the page would look like this

http://localhost:8080/JavaScript

Page 13/14

109

WEB SERVICE PART 3 - CLIENT
-est 1998-

THE DELPHI COMPANY

Blaise Pascal Magazine 94/95 2021

 The output of clicking the Get Number

 button is only viewable in the Console view
 in the web debugger ()Ctrl-Shift-I

The web service server we made can be used
from any other platform that supports web
services, from or or JavaScript, Python PHP

any other language or platform.
This makes it a simple solution to enable
sharing data from your application with Delphi

other third-party solutions.

If you start using your web service from Delphi

other platforms you may run into caching
issues and having to configure Cross-Origin

Resource Sharing.

We will look into these issues in our next article
on deployment of the web service server.

A short recap of the things we have done in
this article. We created a and POST, PUT

DELETE request to the web services client.
We also modified the data to be passed as a
JSON UTF-8 string adding explicit encoding of
the body content that is sent over the network
to the web services server. We added thread-
safety code to the web service server and to
top it all off we added a page with some HTML

JavaScript code that does a roundtrip and asks
our web service for a random number.

In our next articles, we will take a look at ISAPI

and versions of our web services server Apache

and also how to deploy each of these to a
server and allow access to our web service.
Along the way we will tweak some settings to
improve interoperability, with headers HTTP

for caching and and we will configure our CORS

web service for better performance. We may
also add some more support, parsing the JSON

result array and adding serialization of objects
or even use the web service to store other
items besides plain text.
Maybe that last bit will be in another article
though. Stay tuned!

Page 14/14

110

By Danny Wind

Page 1/23

-est 1998-

THE DELPHI COMPANYBlaise Pascal Magazine 96 2021

starter expert

This series
of articles is about writing your own

web services server and client in Delphi. The approach
of all articles is pragmatic. The first article introduced some of

the concepts you need to know and shows you how to create and
consume your own web service in Delphi with just the GET request. The

second article showed you how to update the data in the web service and
how to create in-memory storage for the web service. The third article
showed how to consume and use your web service from both Delphi

clients on Windows and from a web page with JavaScript. This
fourth article is about deploying your web service to the

Internet Information Services (IIS) server on
Windows.

WEB SERVICE PART 4:
DEPLOY TO
INTERNET INFORMATION SERVICES

What are the deployment options for a web service
written in Delphi? If you create a new web application in
Delphi you have the following options in the wizard

Apache dynamic link module An Apache module. Apache has support for HTTP and
 HTTPS. The current Apache 2.4 is supported on x64 Linux.
Stand-alone console application A stand-alone WebBroker console application is a
 web server that has a text-only user interface.
 It supports HTTP using an Indy HTTP server component.
Stand-alone GUI application A stand-alone WebBroker application is a web server that
 displays a form. It supports HTTP using an Indy HTTP
 server component.
ISAPI dynamic link library An ISAPI library integrates with IIS. IIS has support for HTTP
 and HTTPS.
CGI stand-alone executable A CGI executable integrates with a web server.
 Note that CGI is typically slower and more difficult to debug
 than ISAPI or an Apache module.

The stand-alone options do not use the IIS or Apache web server
platform for receiving and handling HTTP requests, but instead rely on
the Indy HTTP web server component. This works reliably and can even
support HTTPS with OpenSSL, although the wizard suggests otherwise.
However it is less suited for server environments exposed to the public

internet, which need to be maintained, updated and monitored to remain
secure. Stand-alone is more suited for static installations hidden inside a

VPN or for embedded industrial installations.

One stand-alone option is missing from this list; it’s also possible to
manually create a Windows Service application and embed the web service

into it. This uses the same Indy web server as the other Stand-alone options.

98

Of these options ISAPI and Apache make the most sense for
regular deployment. Both ISAPI and Apache can be run on

default web server installations of Windows and Linux. You can
just order a Virtual Private Server with any hosting provider and

have your web service up and running on the internet within a
couple of hours. Of course you can also use your own server.
Because IIS and Apache are widely supported you can set up

monitoring on the web server with one of the many available tools
or delegate maintenance and administration to a third-party system

administrator. System administrators are usually well versed in
handling security, updates and monitoring of IIS and Apache

installations. Both IIS and Apache also support HTTPS encryption,
made easy through Let’s Encrypt certificates or, if you need, higher

level certificates from one of the other Certificate Authorities.

In this article we will focus on using IIS and ISAPI for our web
service and we will deploy it to a development machine.

We start by enabling Internet Information Server on a plain
Windows-10 machine. This could be the same (virtual) machine

where you have your Delphi development installed, but any other
Windows-10 machine or virtualized environment is fine as well.

If you are running a Windows Server environment you probably
already have Internet Information Services installed through your
server roles administration panel. In that case you can skip ahead

towards creating the ISAPI itself in Delphi at step 7.

For those of us who are using plain Windows-10 we install the
Internet Information Services server through the Control Panel with

Programs and Features

Blaise Pascal Magazine 96 2021

Page 2/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

v In the Control Panel select “Programs”

u Click on the search icon next to the start menu and type “Control”.
 Note that even if you are using a non English language version of
 Windows this will still lead you to the Control Panel Desktop app.

Blaise Pascal Magazine 96 2021

Page 3/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

w Under Programs click on “Turn Windows features on or off”

Blaise Pascal Magazine 96 2021

x Inside the Turn Windows Features on or off selection box just turn Internet Information
Services on. This will automatically select almost all of the features that we need. We will
do additional configuration steps later on

Page 4/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

y Windows will now install IIS. We can check if the install was successful by
navigating to localhost in our browser http://localhost

z We now have an IIS server running on our Windows-10 machine

The Internet Information Services server, or IIS server, can be used to serve several types of web
site and web service content. The most apparent one is the html page that we just requested by
visiting localhost. It's simply a file located in the IIS root folder.
C:\inetpub\wwwroot

Blaise Pascal Magazine 96 2021

Page 5/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Any other htm file that you place at this location
will be available in the IIS web server as a web page.

Please note that with installing IIS on your machine it also opened port
80 (HTTP) and port 443 (HTTPS) for external connections. At the end of

the article we’ll show you how to easily block or allow traffic to these
ports in the Windows Firewall, as you may not want IIS available to

everyone all the time, especially if you are on a public internet location,
such as an airport.

One of the things that can be hosted by an IIS server is an ISAPI
extension. ISAPI stands for Internet Server Application Programming
Interface, and it allows us to create a dynamic link library (DLL) that

adds to the functionality of the IIS server.

Our next step is to create an ISAPI dll in Delphi. The code from the web
service we wrote in the previous article will be shared and embedded

within this ISAPI dll.

{ Create a new temporary Project Folder, eg \ISAPI

| In Delphi create a new Project with File | New - Other
 and under Delphi - Web choose Web Server Application

Blaise Pascal Magazine 96 2021

Page 6/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

copy \ISAPI\WebServiceISAPI.dpr \WebServiceServerGUI
copy \ISAPI\WebServiceISAPI.dproj \WebServiceServerGUI

} In the wizard choose Windows and then ISAPI Dynamic Link Library

~ Save the project as WebServiceISAPI in the temporary folder \ISAPI
 Now take a look at the project manager. Notice how the ISAPI project has the same

structure as the previously created WebServiceServerGUI project. It is just a project file
and a WebModuleUnit

 There is a difference between the two WebModuleUnit files. The one from
WebServiceServerGUI has the ClassGroup property set to the Vcl framework , while the

one from the WebServiceISAPI has the ClassGroup property set to the framework neutral
setting. We will change that after we merge the two projects

 In order to merge the new
WebServiceISAPI with the existing

WebServiceServerGUI we can simply copy the
two WebServiceISAPI project files over to the
WebServiceServerGUI directory. By doing that

we let the new ISAPI project use the existing
WebModuleUnit from the WebServiceServerGUI

as they are in the same folder

Blaise Pascal Magazine 96 2021

Page 7/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

After copying these files over to the existing WebService project folder

 we can now add this new project to the Project
Group with a right-click in the Project Manager and Add
existing Project

 Now open the project from the Project Manager and open the WebServiceISAPI WebModuleUnit.

WebModuleUnit WebServiceServerGUI As this is now shared with the VCL we need to change the
property to the framework neutral ClassGroup System.Classes.TPersistent

Blaise Pascal Magazine 96 2021

Page 8/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 We also modify the target platform for this project to 64-bit,
 as ISAPI extensions in Windows-10 are by default 64-bit.
 Right click on the project in the Project manager and
 Add the Windows-64 bit platform

 We do not need the 32-bit target platform for the ISAPI dll so you can remove it
 Now build the WebServiceISAPI dll to test if merging the projects was successful

By merging the files from the VCL standalone application WebServiceServerGUI with the
WebServiceISAPI dll project we can just develop and debug our web service with the VCL
application, and then deploy it with a build of the WebServiceISAPI dll. It’s much easier
to debug a VCL application than debugging an ISAPI dll. Because the VCL version of our
web service uses port 8080 and IIS by default uses port 80 we can even run them side by
side.

Installing the ISAPI into IIS requires copying the dll file over to a directory that the IIS
process can access as well as configuring IIS to load the ISAPI dll as an extension. For
this article we will just use the DefaultAppPool and the wwwroot directory to run our
ISAPI dll, because we are deploying to a development machine. In a production
environment you may want to change the IIS configuration and create your own secured
AppPool and website.

An Application Pool is a pool of resources within which an IIS application or website is
run and which can be configured for the websites and applications that it governs. IIS
comes pre-configured with the DefaultAppPool that services the default website at
wwwroot.

Blaise Pascal Magazine 96 2021

Page 9/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 Copy the to the inetpub wwwroot folder. Windows may WebServiceISAPI.dll

 block copying from network locations to the protected inetpub folder, so you
 may need to copy it to an intermediate local folder first(C:\TEMP)

copy WebServiceISAPI.dll C:\inetpub\wwwroot

 Next we need to configure IIS to allow execution of this ISAPI extension
 Open Computer Management with a right-click on the start button

Page 10/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Blaise Pascal Magazine 96 2021

 In Computer Management select the Internet Information Services manager under
 Services and Applications

 We need to use ISAPI/CGI Restrictions to
 configure our ISAPI, but as you can see the
 icon for that is not available. This is because in
 newer Windows and IIS versions ISAPI
 extensions are by default disabled and we need
 to enable it first.
 Go back to the Control Panel as we did earlier
 and navigate to Turn Windows Features on and off.
 In the Internet Information Services branch we
 enable ISAPI extensions

Page 11/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Blaise Pascal Magazine 96 2021

 After enabling this we should see ISAPI/CGI Restrictions turn up in the IIS manager

 Open the feature and use the Add Action on the right to Add our ISAPI dll to IIS

We configure only this single ISAPI dll and allow it to be executed

Page 12/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Blaise Pascal Magazine 96 2021

Blaise Pascal Magazine 96 2021

Page 13/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 After adding the ISAPI dll you’ll find it in the list

 After adding the specific ISAPI to the allowed list we also need to configure
handler mappings for wwwroot
 Select the Default Web Site and open the Handler Mappings with the icon.
Then right click on the ISAPI dll line and Edit Feature Permissions and enable
execution

http://localhost/WebServiceISAPI.dll

The web service is now up and running as an ISAPI extension. Because the web
service uses transient in-memory storage and ISAPI extensions are unloaded by IIS
when not in use, our web service currently suffers from forgetfulness. We need to
reconfigure IIS to hold our web service in memory for a longer time period to be
able to use it properly.

 Select the Default Application Pool and open Recycling on the right-hand
 side under Edit Application Pool

Page 14/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 By pre-selecting the Default Web Site we can configure
 Handler Mappings just on this website. Handler mappings
 on server-level will still have ISAPI-dll as disabled
 Test if this works by requesting the WebServiceISAPI.dll in a
 browser

Blaise Pascal Magazine 96 2021

 The IIS manager will translate this to the local time format, so it may end up
 as 12:00 AM depending on your international settings.
 This is fine, its intended to Recycle at midnight, once every 24 hours
 Test if it all works by reconfiguring the URL for the WebServiceClient application
 in the EditURL text http://localhost/WebServiceISAPI.dll/KeyValue/0

 You can now POST and PUT new values with the Delphi web service client. If you close the
Delphi client and re-open a new web browser and request the POSTed value it will still be there. If this
does not work check the Recycling settings of the Default App Pool.

Page 15/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Modify the Recycle time and set it to 00:00 specific time

Blaise Pascal Magazine 96 2021

<html>
<head><title>Call Number with JavaScript</title></head>
<body>Call Number with JavaScript <button onclick="getNumber()">Get Number in
Console Log (view Ctrl-Shift-I).</button>
 <script type="text/javascript">
 function getNumber() {
 let url = 'http://localhost/WebServiceISAPI.dll/Number';
 fetch(url).then(resp=> resp.json().then(j=> console.log('\nNumber: ', j)));
 }
 </script>

</html>

Note that later on you may want to change the reference of localhost to your external IP or your DNS
registered domain name, as localhost only makes sense from within your development machine. For
now we need it to be localhost.

 Save this file as default.htm in a folder \HTML and copy it to the IIS wwwroot folder
C:\inetpub\wwwroot\default.htm

 Copy the HTML and JavaScript code from the /JavaScript Web Action Handler to
Notepad and change the embedded url to our new WebServiceISAPI. Don’t forget to
remove the additional single quotes or just use the below text

 IIS will prefer loading
 default.htm instead of
 iisstart.htm, and the
 default HTML page will be
 displayed when visiting
 localhost
 Test if it works by opening the
 localhost url in a browser from
 inside your development
 machine. Remember to open
 the Console Log in Firefox or
 Chrome/Edge with Ctrl-Shift-I

Page 16/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Our web service is now up and running on an IIS web
server. The IIS web server can also be used to serve static

HTML and JavaScript pages. In our previous article we added
a /JavaScript Web Action Handler that returned some HTML

and JavaScript code that in turn used the web service itself to
return a number through a REST request on localhost\Number.

It's a bit of a convoluted path. Now that we are running on a
web server it makes much more sense to save this HTML with

JavaScript page to a regular static html file in the default
website and let the IIS web server handle the request.

Blaise Pascal Magazine 96 2021

 This all looks fine and the button works and requests a new
 Number from the new ISAPI web service
 What if instead of using localhost we would use the url
 http://127.0.0.1 ?

 Let’s investigate why this is happening

Page 17/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 The page opens just fine.But if you
now click on the Get Number

 button we get an error in the
Console

We visit the default.htm web page with the IP address 127.0.0.1. When we then
click on the Get Number button, the JavaScript performs a XHR GET request from the
web page at address 127.0.0.1 to a web service at localhost. We know that these are
one and the same, but in fact, the localhost hostname and 127.0.0.1 are considered to
be different by the browser, so the browser handles it as a cross-site event. The browser
therefore asks the web service at localhost if this cross-site request should be allowed.
Because the web service does not indicate that such a Cross-Origin Request is allowed,
the request is blocked by the browser.

 Cross Origin Resource Sharing.
A web service can indicate access from other domains is allowed, by responding

with ‘Access-Control-Allow-Origin’ in the HTTP header.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CORS

Blaise Pascal Magazine 96 2021

The following image from wikipedia on Cross Origin Resource Sharing illustrates this path.

 Add code to the event-handler, CORS WebModule BeforeDispatch

 to indicate that calling our web service from other domains is OK.

Page 18/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Path of
standard latency

Path of added latencyNo

No

Yes

Yes

Yes

Yes

Yes

No

No

No

JavaScript makes a
cross-domain XHR call

Is it a GET
or HEAD?

Is it a
POST?

ERROR

Make OPTIONS call to
server with all custom

details

Are there
custom HTTP

headers?

Did server respond with
appropriate Access-Control

headers

Make actual XHR

Is the
content-type
standaard?

"Path of an XMLHttpRequest(XHR) through CORS." by Bluesmoon is licensed under CC-BY-SA 4.0

So what we need to do is have our web service allow by adding the CORS

appropriate * headers.Access-Control

 Open the unit of the project and add a BeforeDispatch WebModule

 event-handler to the WebModule

Blaise Pascal Magazine 96 2021

 . (: ;procedure TWebModule1 WebModuleBeforeDispatch Sender TObject
 : ; : ; :);Request TWebRequest Response TWebResponse Handled Booleanvar
begin
 {Report back to the caller/browser that we allow Cross Origin Resource Sharing (CORS) for all calling domains}
 . (,);Response SetCustomHeader 'Access-Control-Allow-Origin' '*'

 (. (if Trim Request GetFieldByName
)) <> 'Access-Control-Request-Headers' '' then
 begin
 . (, Response SetCustomHeader 'Access-Control-Allow-Headers'

 . ()); Request GetFieldByName 'Access-Control-Request-Headers'

 := ; Handled True
 ; end
end;

{ Set additional headers to ask client-side to not cache locally
 Cache-Control=no-cache, no-store, must-revalidate
 Pragma=no-cache
 Expires=0 }

Response CustomHeaders AddPair. . (,);'Cache' 'no-cache, no-store, must-revalidate'

Response CustomHeaders AddPair. . (,);'Pragma' 'no-cache'

Response CustomHeaders AddPair. . (,);'Expires' '0'

Page 19/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

The code above is the most permissive
response you can have for a web service.

If someone initiates a CORS preflight request, all of the Access-Control-Request-Headers
are allowed by simply copying them over to the Access-Control-Allow-Headers in the

response. If a client asks if POST is supported, we indicate that it is, same for any of the
other HTTP methods. We could also limit this a bit, to indicate that we support just a limited

subset of HTTP methods by using Access-Control-Allow-Methods:
 POST, PUT, GET, DELETE.

In the same code snippet, by setting Access-Control-Allow-Origin to ‘*”, we are allowing
CORS calls from all origins. You could limit this to be less permissive by setting specific

domain names in Access-Control-Allow-Origin.

If you start using your Delphi web service from other client platforms or browsers you may
also run into caching issues. To prevent a web service consumer from caching previously

retrieved values for the idempotent and cacheable HTTP GET command, you can set some
headers in the web service to inform the web service consumer that it should not cache

anything.

 Add these Custom Headers to the code in the WebModuleBeforeDispatch handler
to request no-caching

Blaise Pascal Magazine 96 2021

These added headers ask other web service consumers to always retrieve new values
for each GET request. This is not entirely foolproof though. You may run into caching
proxy servers that choose to ignore these headers, in which case you would need to

take additional steps. One of the tricks commonly used is to add a dummy parameter to
the URL that the client then changes with each request. This dummy parameter can be
ignored by the web services server, but any in-between caching proxy will see this as a

completely new request and not serve the result from its cache. One example:

{This URL is different}
http://localhost:8080/KeyValue?key=0&unique=random42

{each time}
http://localhost:8080/KeyValue?key=0&unique=random84
{but gets the same value from the key value store}

 Open the Application Pools setting, select the Default Application Pool, right-click
 and choose Recycle.
 By manually recycling the Application Pool of the ISAPI dll it will be unloaded from
 memory and you will be able to replace the dll file on disk

Page 20/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

 We are now ready to deploy the next version of our ISAPI dll.
 To update the dll, recompile the ISAPI library in Delphi and perform the following
 steps to replace the existing ISAPI dll
 Open the IIS manager by using the field next to the Start button.Search Search for “inetmgr”

Blaise Pascal Magazine 96 2021

 Then using the File Explorer remove the existing WebServiceISAPI.dll
 from wwwroot and copy the new version of this dll to the same location.
 If you are unable to replace the dll it may still be in use, you can release it
 by stopping and starting the IIS web server.

With these modifications
to the web service CORS preflight our web

service will be accessible from external domains.
Note that the localhost reference in the JavaScript

snippet only makes sense from within the
development machine. If you want to access the
default.htm from outside of the development
machine you need to change it to the external IP or
hostname. For a production machine you’d change
it to the domain name.

The web service is now running under IIS and the
coding is done, but there are some additional tips
and hints that I’d like to share.

When we installed IIS on the development
machine it also opened up port 80 (HTTP) and
port 443 (HTTPS) for all types of networks
(Private, Public, Domain). When you visit a
location with public internet, such as an airport,
you may not want to have these IIS ports open.
Of course you can easily change these firewall
rules, and close these ports, using the Advanced
Firewall configuration.

Page 21/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

If we now try it again with it works OK http://127.0.0.1

But this does require some mouse clicks and there is an easier way of
doing this using PowerShell. Right-click on the start menu and start
Windows PowerShell (Admin).

 Get a list of the two firewall rules for IIS with this command
Get-NetFirewallRule -Name "IIS*“

 Verify that you see just two rules, for port 80 and 443, both for IIS
 Next we do a WhatIf, to see if disabling these rules will only affect these two rules

Set-NetFirewallRule -Name "IIS*" -Enabled False -WhatIf

 If that looks good then execute the actual disable command
Set-NetFirewallRule -Name "IIS*" -Enabled False

Page 22/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Blaise Pascal Magazine 96 2021

Set-NetFirewallRule -Name "IIS*" -Enabled True

 And IIS can again be reached from other machines.

While you are actively developing and testing with Delphi on IIS on your development
machine or laptop you can easily enable the firewall rule for full access. In all other
cases you can disable it and have IIS safely hidden behind the firewall.

In this deployment we chose to host our ISAPI dll in the Default Website and the
Default Application Pool, which is fine for a development machine. However for
deployment on a production environment you will probably create a new website and
a new Application Pool for each ISAPI dll. This makes it easier to manage each ISAPI
extension as well as more secure. Additionally you can shorten the URL to the
WebServiceISAPI.dll with an URL Rewrite, which makes it both easier to access the
web service as well as obscures the actual ISAPI dll filename. For production you will
also need to harden your IIS installation, making it even more secure.

In our next article we’ll be deploying our web service to Apache on Linux. Stay tuned!

 Now test if IIS can still be reached on your machine from another
 machine using your external IP address. It should now be blocked.
 Note that your localhost will remain operational, as it's only blocking
 external connections.
 Unblocking is easy as well, just use the -Enabled True command

Page 23/23WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

Source code for this article can be downloaded here:
https://www.blaisepascalmagazine.eu/your-downloads/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	WebService_2.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

	WebService_3.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

	WebService_4.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

