\
|

QD

. . \‘(\ .
WEB SERVICE PART 1
By Danny Wind) Starter é_____fl ‘
INTRODUCTION

This series of articles is about writing your
own web services server and client in Delphi.
The approach of all articles is pragmatic.
This first article introduces some of the
concepts you need to know and shows you
how to create and consume your own web
service in Delphi.

What is a web service? A web service sends
and receives data over the world wide web.
Web services mostly communicate over the
internet through the HTTP protocol and send
and receive data in one of the web formats,
such as JSON, XML or HTML.

N

Why would you want to build a web service?
Web services are used in almost every app,
website and desktop application to get local

1. X\, |

Page 1/10

URL - Uniform Resource Locator

This is the human readable address that a
resource (a web service) can be found at. An
example would be https://duckduckgo.com/.
It’s translated to a physical IP address through
DNS. This way the resource can be located
over a TCP/IP network. In analogies an URL
would be the home address for the house
where your resource lives.

URI - Uniform Resource Identifier

There is also a thing called URI. This identifies
a specific resource. If you just go with the idea
that this adds a specific resource identifier to
retrieve from the URL location, you're not far
off. An example of an URI is
https://duckduckgo.com/index.html. In
analogies the URI would be a specific
bookcase inside the house.

and remote data. Web services are also used

for interoperability and import and export. For
instance accounting software usually has an
interface to its locally or remotely stored data
using a local or remote web service. Web
services are also easily scalable. Start with a
simple locally run web service on a laptop and
then scale up into a server park or into the
cloud.

In a sense even a website is a web service.

URL vs URI

It's fun to debate what is or isn’t an URL, or an
URI, because the definition in the RFC
documents leaves some of it open to different
interpretations. So you may get into a
discussion at the coffee machine on URL vs
URI, after which you can relax with your cup of
coffee, as it really doesn't matter. It’s just the
location of your web service.

When you open an URL
(https://www.blaisepascalmagazine.eu/
) in your web browser the browser sends a
HTTP GET command to the website URL and
in response receives data in the form of a
HTML page.

However, when software developers mention
web services, they mostly mean a web service
that uses REST (REpresentational State
Transfer) over HTTP to send and receive JSON
formatted data. For instance the DuckDuckGo
API that resolves your question into a direct
answer from WikiPedia, GitHub and more. Just
try this link in your browser

https://api.duckduckgo.com/
?gq=Blaise&format=jsoné&pretty=1

When you access a web service you supply an
URL combined with an identifier into an URI

for a specific resource.
\

\ N
\‘(\.\\\J@

Blaise Pascal Magazine 92 2021

NN

The protocol used is HTTP, denoted by the
prefix http:. Even if the URL has HTTPS in its
prefix this is still talking HTTP, it’s just
encrypted.

HTTP - Hyper Text Transfer Protocol

HTTP is the protocol used to communicate
over TCP/IP with your web service. In analogies
HTTP is a very limited language used to
exchange data.

HTTP has nine commands that are used to
request and receive data. Each of these
commands has a specific purpose. For web
services there are four commands you should
start with.

\ Y
RN

Y

IR

\
|

\
4
N
(.

\

¢

N

A ‘ N\
WEB SERVICE PART 1

HTTP GET
idempotent, cacheable
usage in our web service

-

\‘I

HTTP POST
not idempotent, not cacheable/stale
usage in our webservice

HTTP PUT
idempotent, not cacheable/stale
usage in our web service

"N HTTP DELETE

idempotent, not cacheable/stale
usage in our web service

A Y N\ . 1. A" N\ .

In our article we will use a simplified mapping
of HTTP commands to actions we want our
web service to perform. For more complete
mapping you could take a look at some of the
open source REST web service frameworks
available.

Some Open Source web service frameworks

MARS Curiosity Framework:
https://github.com/andrea-magni/MARS

mORMot ORM Framework
https://github.com/synopse/mORMot

WiRL RESTful library
https://github.com/delphi-blocks/WiRL

% N\ A Y \

Page 2/10
\ll‘ \‘I‘

Retrieves data from the resource

\,

SELECT

(set existing record, disallow caching so we get new
data each time)

Appends data to the existing resource

UPDATE existing

(partial update of fields in a record,

not updating the primary key)

Replace the existing resource or inserts data as
a new resource

INSERT new (or REPLACE)

(insert new record with new primary key,

or replace entire record)

Deletes the resource

DELETE
(delete existing record or return error if it doesn’t exist)
G X\, 1. O\,

We will not be using these existing frameworks,
instead we will be building a simple web
service server and client from scratch.

STARTING THE BUILDING OF THE PROGRAM
on the next page we will create the web service
client.

@ Web Service Client
https:/fwww.blaisepas

MemoResponse

\ R |

[& | =)

calmagazine.eu/ GET

P

NetHTTPClient

)

NetHTTPRequest

N
Xy

Blaise Pascal Magazine 92 2021

NN

|, V
N

NN

Figure 1: The W(ib S%vice Client to be build

)
£ A\ N

|, V
Y

IR

Q‘\u NV Y N\ A % \ A Y N\
(WEB SERVICE PART 1 Page 3/10

AR A LYo

\ Start with either a VCL or FireMonkey application X \
1. Add a Panel and align Top
l* 2. Add a Button to this Panel and rename to ButtonGet, align Right ‘Y
3. Add an Edit to this Panel and rename to EditURL, align Client
(+ 4. Add a Memo to the Form and align Client \ \
5. Add aNetHTTPClient to the Form
‘ 6. Add a NetHTTPRequest to the Form and link the Client property to NetHTTPClie tl
\ 7. Add anonclick event-handler to the ButtonGet l \
procedure TFormMain.ButtonGETClick(Sender: TObject); X \ *
\begin
NetHTTPRequest.MethodString := 'GET};

end;

(NetHTTPRequest.URL := EAitURL.Text; l
< NetHTTPRequest.Execute(); X

\}
l 8. The HTTP GET request is executed asynchronously, which means the l*
\ response will appear at some time in the future. When the response arrives the X \
OnRequestCompleted event-handler of the NetHTTPRequest will be called.
9. Add an onRequestCompleted event-handler to the NetHTTPRequest ‘%

\

const AResponse: THTTPResponse);
begin

MemoResponse.Text := AResponse.ContentAsString;
end;

N \
10. Run and test using a website URL, for instance N

K procedure TFormMain.NetHTTPRequestRequestCompleted(const Sender: TObject;

-
7,

https://www.blaisepascalmagazine.eu/

11. The GET will return a HTML page

(® Web Service Client - O X \ \\<
GET \

https:/fwww.blaisepascalmagazine.eu/

N <!DOCTYPE html:<html lang="en-GB"»<head: <meta charset="UTF-8"> l \\
<meta name="viewport" content="width=device-width, initial-scale=1"> ‘\

¢link rel="profile™ href="http://gmpg.org/xfn/11"> <link

rel="pingback™ href="https://www.blaisepascalmagazine.eu/xmlrpc.php">
<title>Blaize Pascal Magazine | Site about all aspects of the prgraming l
language Pascal</titler<link rel="dns-prefetch’

href="//ajax.googleapis.com’ /><link rel="dns-prefetch’ \\
href="//fonts.googleapis.com" /><link rel='dns-prefetch’' href='//s.w.org’

fr»<link rel="alternate"” type="application/rss+xml” title="Blaise Pascal (
Magazine » Feed" href="https://www.blaisepascalmagazine.eu/feed/™
fx<link rel="alternate" type="application/rss+wuml” title="Blaise Pascal X \
Magazine » Comments Feed”

href="https://www.blaisepascalmagazine.eu/comments/feed/" /> ‘
<script type="text/javascript"> window. wpemojisettings =

NT2x720/ ", Mext™ i " png”, "svgUrl” : "https i\ \/s.w.org\/images\/core

VWemojil/12.8.8-1\/svgh /™, "svgExt" " . svg" ,"source": \
{"concatemoji”™: "https:\/\/www.blaisepascalmagazine.eu\/wp-includes'/js

T e PRep I I Lh T I T o PP - (P ‘

Figure 2: The result of the GET order event

N

{"baseUrl™:"https:\/\/s.w.org\/images\/core\/emoji\/12.8.08-) N

\ W \ W \ W \
N

Blaise Pascal Magazine 92 2021

<

I Ay YAy YAy v X

A Y N\

| | Page 4/10
A VO

\(l\\<

\)

(‘\n NV % N\ A Y
[WEB SERVICE PART 1

Al
N

\l‘

https://api.discogs.com/artists/457265

13. The result is JSON data, recognizable due to the curly braces {}

12. When you use an URL to a REST endpoint from an existing Web Service,

you get JSON data. Try this URLs in the Web Service Client

(%) Web Service Client

— O

x

‘(‘q(

https://api.discogs.com/artists /457265 GET

"https://www.discogs. com/artist/457265-Wende-Snijders”, “releases_url":
"https://api.discogs.com/artists/457265/releases™, "images": [{"type™:

N{"name": "Wende Snijders™, "id": 457265, "resource_url™: *

"https://api.discogs.com/artists/457265", "uri": l
weooUurilSeT: MU, “width": 168,

"uri®: "", "resource_url™: ""

448}, {"type": "secondary"”, "uri": ‘
"width™: 596, "height": 688}, X

"primary™, “uri®: , resource_url":
"height": 188}, {"type": "secondary",
"urilse”: "", "width": 338, "height™:
N "", "resource_url™: """, "urilse”: "",
{"type": "secondary™, "wri": "", "rescurce_url”: ", “urilSe": "",
"width": 458, "height": 483}, {"type": "secondary”, "uri": "
"resource_url™: ", "urilse": ", "width": 337, "height™: 25@}], ‘
"realname”: "Wende Snijders”, “profile”: "Talent has no boundaries for

‘(Dutch singer-songwriter Wende, who has enjoyed one of the most remarkable

-z

musical careers seen in the Benelux countries in recent years. As a fresh
graduate from the Amsterdam Theatre School, in 2884 Wende released her
debut album of brilliant interpretations of a repertoire of French
chansons, supported by the renowned Metropole Orchestra. It became a

N staggering success, setting the foundations for her to become established
________ L..1 2

A
./

e e e -t Iy e L Y U) U ¥ puursy pugeny, [oy

Figure 3: The result is JSON data

14. The next step is to create our own Web Service Server

(® Web Service Server GUI — O X

N Start Stop
)

Port
3080

Open Browser

Figure 4: The Web Service Server Gui

\ N

Blaise Pascal Magazine 92 2021

NN

\ N\ \ N

£ N\

AR 3

(A N \ A Y \ A % \ ‘
[WEB SERVICE PART 1 Page 5/10 Y

AR A A

\' 15. We start with the New Item wizard for Web | Web Server Application

RED Mew ltems

(= Delphi s ‘1 Web Server Application
= ActiveX B2l Creates a stand-alone web server application or an 115 web server
B Database plugin that uses WebBroker components to process HTTP requests
N and generate web pages.
B DataSnap
\ B DUnitx A= SOAP Server Application
N oy : SOAF Creates a CGl, ISAPI or Indy Web Application that can expose
= s
Individual Files interfaces as Web Services.
l = Multi-Device
< " RAT Serys-
‘ B ADS. ser
= Web
N
= Windows
= Modeling
= Other ™
‘(Template Libraries - Cancel Help

Figure 5: starting with the Web Server Appication: New =>Other->Web

16. This will allow you to create a web server that runs standalone or as a library in Apache (Linux)
™~ or IIS (Windows). It will process HTTP requests and you can write the code on how it should
respond, with plain text, a JSON string, HTML page or even an image or a file.

@ Mew Web Server Application >
Platform :
Select the platform for the application to be created
\ \ \
Specify the type of platform for the application

A
Windows
g bBroker [Linux l

-
7

1ofd << Back Finish Cancel Help \
Figure 6: Standard for Wln

17. For now we go with Windows. We can add Linux support later on.

\ W \ W \ W \
s‘i

Blaise Pascal Magazine 92 2021 @

AN VAN I Ay Y S

! NV Y N\
WEB SERVICE PART 1

L\

NV Y N\
A

@ MNew Web Server Application

WebBroker Project Type
Select the type of WebBroker project

A stand-alone WebBroker application is a web server that displays a form. It Supports
HTTP using an Indy HTTP server component.

() Apache dynamic link module

—3
=ﬁehBruker

() Stand-alone console application
(®) Stand-alone GUI application

() ISAPI dynamic link library

() CGl stand-alone executable

AS oL 7 T

ext > Cancel

(2of4 <= Back

=

Help

o

Figure 7: Select the type of WebBroker

18.
N

share the base code files between these options.

For now we create a stand-alone GUI application. If we run this wizard
again later on we can combine these options into one Project Group and

$ Mew Web Server Application

Application Type
Select the type of application to be created

Specify the type of application that will be created

u—

(®) VCL application
=ﬁehl§roker

() FireMonkey application

& A

Cancel

Jof4

<< Back Help

x

Figure 8: VCL
19. VCL js OK
\ N\

\ N

Blaise Pascal Magazine 92 2021

NN £

AR

A Y N\

\K‘ P?ge6/10
N
\
l\<‘N
\(\\(N
\
\(ﬁ(

\l‘

\

|

\ Y N\
LY

N\
" WEB SERVICE PART |

NV Y N\
LV

\ @ New Web Server Application

Port Number

Click a field for more information

HTTP Port:
E 8080 Test Port
! WebBroker el
l CIHTTRPS
A4ofd <= Back Finish

Specify the port that will be used by the web application to listen for client requests,
Use "Test" button to make sure the port is not already in use on this computer.

Eind Open Port

Cancel Help

Figure 9: The port number

20. Test if the default port is not already taken on your machine.

If it is you can Find Open Port or just try another port, such as 8088 or 8888.
21. Save the files into a separate directory and save the Project as WebServiceServerGUI

@ Web Service Server GUI

Port

|BDBD |

Open Browser

— | >

Figure 10: Run the Web Service Server GUI

\ N

Blaise Pascal Magazine 92 2021

NN Y

A % N\

\k‘ P?ge7/10
N

\

l\<‘N
\(\\(N

\

\(‘q(

\l‘

(A N N\ A Y \ A % \ ‘
[WEB SERVICE PART 1 Page 8/10 Y

A A A

\ 22. Run the Web Service Server GUI
23. Click on Start, this should open the Windows Firewall configuration, depending on your
% local network configuration (Private or Public) you can choose to open the port for
l private networks only or for public networks (if you have your computer configured as
(such). Please note that when opening it up for public networks would mean the port is
also open when you visit an airport.

@ Windows Security Alert ot

private networks.

l(Windows Defender Firewall has blocked some features of WebServiceServerGUI on all public and
@ MName: WebServiceServerGUI
Publisher: Unknown

\ Path: VYWmware-host\shared folders\shared\trainingpublicaties
\blaise_webservices_2021\source
Lisimbmme immem e b L mbim s i m s e Lo D7 b

Allow WebServiceServerGUI ta communicate on these networks:
Private networks, such as my home or work network

because these networks often have litte or no security)

{([JPublic networks, such as those in airports and coffee shops (not recommended

E; Allow access Cancel

Figure 11: The Windows Firewall config

24. Make note of the URL that is then opened in the web browser
http://localhost:8080/
25. Run the Web Service Client and open this URL.
(26. The :8080 in this URL is the internet port. An internet port is like a door, each door has its
own number. If the port is opened in the firewall, traffic is allowed through.
27. The localhost in this URL translates to a loopback to this machine. It's translated to a local
IP address (127.0.0.1) that points to the machine you are running on.

(®) Web Service Client - O X

http://localhost:2080/ GET

<html><head><title>Web Server Application</title></head><body>Web Server

Application</body></html: \ N

Figure 12: Run the Web Service Client and open this URL. %

\ N \ N N \(\\,(

Blaise Pascal Magazine 92 2021 @ 8

AN VAN Ay Y S

(A ‘ N\ A Y \ A % \ l
WEB SERVICE PART 1 Page 9/10 Y

AR A A

\ 28. This is the default handler for the Web Server Service
* 29. Let’s add a new GET handler to the Web Server Service

l 30. Openthe Web Server Service GUI project and open the WebModuleUnit
(Structure [+ B4 Welcome Page | Formbnitl WebModuleUnit1l e “
X 48

WebModulel

N v
& Actions
\\ ¥} 0 - DefaultHandler

l Object Inspector
WebModule1l TWebModulel
Properties Events /O
Actions (TWebActionltems,

N LiveBindings Designer LiveBindings Designer
Name WebMaodulel
OldCreateOrder I:‘ False
Tag 0
ClassGroup Vel.Controls. TControl

('+ Figure 13: WebModuleUnit
31. HTTP requests to the Web Server are mapped to WebActionltems (Action Handlers).

\l Add a new WebActionltem by clicking the three-dots in the property Actions
Structure oo Welcome Page |FDrmUnit1 WebModuleUnit] & e
E 4 &
WebModulel
& Actions
¥} 0 - DefaultHandler
B @ Editing WebModulel Actions %
N Object Inspector L 25 4 ¢
WebMeodulel.Actions[1] TWebActionltem
Name PathInfo Enabled Default Method Producer
Properties Events ge
DefaultHandler ! True * mtAny
Default D False WebActionltemMumberGet MNumber True mtiGet
Enabled True
MethodType mtGet
Marme WebActionltemNumberGet
Pathinfo fNumber
Producer
ProducerContent
Figure 14: \

32. Modify MethodType to mtGet and Pathinfo to /Number
33. Add an OnAction event-handler to this WebActionltem and code a response

procedure TWebModulel.WebModulelWebActionItemNumberGetAction(Sender:

TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean); \

begin \
Response.ContentType := 'application/json; charset=UTF-8'; *
Response.Content := Random(100).ToString; l

end; \\\J \\\J \\\J \

Blaise Pascal Magazine 92 2021 @ o

AN VAN I A IR

\
|

A

(

\

X

A Y N\ A Y \) A Y \ l
WEB SERVICE PART 1 Page 10/10 ¥

AR A A

34. Run the Web Service Server, and Start it with the Button

35. Now open the Number URL in the Web Service Client
http://localhost:8080/Number

36. Request a couple of random numbers in the Web Service Client

(®) Web Service Client - O *

hittp://localhost8080/Number

H GET

S A

42

Figure 15: Opening the Number Url

37. By the way, this is valid JSON, because a Number is a primitive
datatype is where no encapsulation or serialization is needed.

localhost: 3080/ Number x |+ o O >

c ¢ @) localhost .

JSOM Faw Data Headers

I @ ¢

Save Copy Collapse All Expand All

42

Figure 16:

38. See here also for a brief description of JSON structures
https://www.json.org/json-nl.html

You already have the basis for your own Web Service. You can use this code for example to use the
values from your own weather station via GET requests available and displayed in an Android App.

In the following articles, we will change data in the Web Service by adding a PUT, POST and DELETE.
We will also use more complex JSON structures.

You can download the source code for this article from your subscription webpage: *
https://www.blaisepascalmagazine.eu/your-downloads/

' \ Y N \N
S A A\

Blaise Pascal Magazine 92 2021 @

AN VAN I A IR

"-A

\
A 1. X

I. N « 1. X .

WEB SERVICE PART 2 - STORAGE st Page 1/12

By Danny Wind

This series of articles is about writing your own

ﬁ web services server and client in Delphi. The

expert

‘ [B
X consumes your web service could be caching
requests. It’s easy to notice when you run into

approach of all articles is pragmatic. The first this.
article introduced some of the concepts you N
need to know and shows you how to create and If you get the same result from a GET request,

consume your own web service in Delphi with
just the GET request. This second article shows
you how to update the data in the web service

and how to create in-memory storage for the
web service.

In the previous article we only used the HTTP
GET request to return data from our web
service. This time we will add the other three

even if the data in the server has changed, then
your web client is caching. Taking a look at
network traffic helps as well. If the web client
only generates network traffic on the first net
request, you know what's happening. It's easy
to prevent this type of caching behaviour, by
setting the Cache-Control and Expires elements
in the HTTP header. Remember this if you're not
getting the new data that you want to get from

HTTP commands to our web service. your GET.

HTTP GET Retrieves data from the resource
idempotent, cacheable

usage in our web service SELECT

(get existing record, disallow caching so we get new

data each time)
HTTP POST Appends data to the existing resource

not idempotent, not cacheable/stale

usage in our webservice UPDATE existing

(partial update of fields in a record,

not updating the primary key)

HTTP PUT Replace the existing resource or inserts data as
idempotent, not cacheable/stale a new resource
usage in our web service INSERT new (or REPLACE)

(insert new record with new primary key,

or replace entire record)
HTTP DELETE Deletes the resource

idempotent, not cacheable/stale

usage in our web service DELETE

Before we do that however we need to know
what the idempotent and cacheable
properties of the HTTP commands mean for
our web service.

Idempotency means that after the first
request a second (or third and so on) request
of an idempotent method should yield the
same effect, unless there is an error or it has
expired.

The cacheable property means that a
requester is allowed to cache a request. So
instead of sending a repeated request to the
server again, it can just return a cached result.
Both idempotency and cacheable combined in
the GET request means that a web client that

Blaise Pascal Magazine 93 2021

(delete existing record or return error if it doesn’t exist)

IDEMPOTENT METHODS (RFC definition)

Methods can also have the property of "idempotence" in that
(aside from error or expiration issues) the side-effects of N > 0
identical requests is the same as for a single request. The
methods GET, HEAD, PUT and DELETE share this property.
Also, the methods OPTIONS and TRACE SHOULD NOT have
side effects, and so are inherently idempotent.

However, it is possible that a sequence of several requests is
non- idempotent, even if all of the methods executed in that
sequence are idempotent. (A sequence is idempotent if a
single execution of the entire sequence always yields a result

that is not changed by a reexecution of all, or part, of that
sequence.) For example, a sequence is non-idempotent if its
result depends on a value that is later modified in the same
sequence.

A sequence that never has side effects is idempotent, by
definition (provided that no concurrent operations are being
executed on the same set of resources).

N

\ ., |, W \ |
WEB SERVICE PART 2 - STORAGE

Looking at PUT, you see that PUT is considered
idempotent and not-cacheable. So the same
PUT request, when repeated, should yield the
same result. However PUT is not considered
cacheable, so if you PUT a resource, then
DELETE that resource from another location and
PUT it again it will result in the new resource.
The second PUT is not cached on the client-
side, it’s always considered stale and thus sent
to the server. In short, if you PUT something
twice it should always successfully replace the
existing resource. Your PUTs won’t disappeatr.

For POST the defined behaviour is a bit
different, as POST is not idempotent. So if you
want to update a resource it could work the first
time, but if someone else uses DELETE on that
resource a subsequent POST (append) to the
same resource could yield an error or just fail.

HTTP Commands

A good thing to know is that the definition of the
HTTP commands in RFC allows for multiple usage
scenarios of each command.

Because there is some leeway between definition
and interpretation of its usage for PUT and POST in
web services it's perfectly valid for us to create a
web service that uses PUT as an equivalent for
INSERT or REPLACE and POST as an equivalent for
an UPDATE.

There is an interpretation that wants you to use
POST to get data, when the GET request
manipulates the data on the server. In our web
service we return a random number with a GET
request, and this interpretation would suggest
using POST instead, as a POST is not idempotent
and is allowed to change the server state.

Nevertheless in this article we will continue using
GET with Cache-Control and Expires elements in
the returned HTTP header to prevent caching.

Before we start coding and add PUT, POST
and DELETE methods to our web service, let’s
first expand our toolkit and introduce the REST
Debugger. This is a handy tool that comes
bundled with the Delphi IDE. You can use it to
test and debug your web service. You can find
the REST debugger in the Delphi IDE under
Tools > REST Debugger.

Blaise Pascal Magazine 93 2021

Tuae Derpa1 COMPANY

-est 1998-

Page 2/12

Tools Tabs Help

% Options...

ot Template Libraries...

i i'1 Getlt Package Manager...
O Manage Platforms...
Pattern Organizer...
£ Build Tools...

Translation Manager >
|__'—::'p Configure Tools...

Bitmap Style Designer
FireDAC Explorer
FireDAC Monitor
REST Debugger

AML Mapper

Figure 1: Tools = REST Debugger

Let’s run the REST Debugger and use it to test
the web service we created in the previous
article. We can use the GET request for Number.
http://localhost:8080/Number

\) |, W N\, |,

WEB SERVICE PART 2 - STORAGE

HI COMPANY

-est 1998-

Custorn body:

Response

http://localhost:2080/Number
200 : OK - 2 bytes of data returned. Timing: Pre: Oms - Exec: 31ms - Post: Oms - Total: 31ms

Headers Body Tabular Data

B RESTDebugger - [m}
P
REST Debugger 10.4.2
w Embarcadero Technologies
Request
Request Parameters Authentication Connection
Method: URL:
GET ~ | |httpy/flocalhost:8080/Number ~ | X Send Request
Content-Type:
4]
New Request

Load Request
Save Request

Copy Components

Connection=close

Date=5un, 28 Mar 2021 12:39:24 GMT
Content-Length=2
Content-Type=application/json; charset=UTF-8

Proxy-server disabled

Figure 2:

In the REST Debugger we can see that the returned Content-Type

and if we open the tab Body we see that the returned JSON is valid.

Response
http:/flocalhost:8080/ Mumber

200 : QK - 2 bytes of data returned. Timing: Pre: Oms - Exec: 31ms - Post: Oms - Total: 31ms

Headers Body Tabular Data

Content is valid 150N 150N Root Element:

47

Figure3: Result

Blaise Pascal Magazine 93 2021

= application/json

. .
WEB SERVICE PART 2 - STORAGE

N)
THeE D

We are now ready to add some new methods to

our web service.

OPEN THE WEB SERVER SERVICE

(WebServiceServerWithGUI) we created in the

previous article in Delphi. It's compatible with
either Delphi 10 Community, Delphi 10
Professional, Enterprise or up.

0 In the WebModuleUnit edit the Actions

property and add a new handler with name

WebActionltemKeyValueGET, MethodType
mtGet and pathinfo /KeyValue. Figure 4:

HI COMPANY

-est 1998-

Page 4/12

The next step is creating an actual Key Value
store in-memory to hold the data for this web
service. We will be using a generic TDictionary
to store the Key Value pairs.

To safely and successfully use this in-memory
Key Value store we need to know how the
WebModule handles incoming requests. A Web
Broker application has only one WebModule
class variable as you can see in the interface
section of the WebModuleUnit

var

WebModuleClass: TComponentClass = TWebModulel;I

O Editing WebMaodulel. Actions

2 4£H &

Mame PathInfo
DefaultHandler ! True
WebActionItemMumberGet Mumber True
WebActionItemkeyValueGET fEeyValue =

Enabled Default Method

=

*

However for each
request a new
WebModule instance
may be instantiated
and each request is
handled in its own

Ly

Praducer

rtAny

thread. For us this
miGet .

means we will need to
miGet

'

serialize access to our

g In the OnAction event-handler for this new
item code a test response in the format of
a JSON string.

in-memory Key Value
store to make it thread safe. Also the Key Value
store will be created as a global variable to make
it accessible to all WebModule instances.

procedure TWebModulel.WebModulelWebActionItemKeyValueGETAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse;

var Handled: Boolean);
begin

Response.ContentType := 'application/json; charset=UTF-8';

Response.Content := '{"message":"it works"}';
end;

@ Declare the glock and
gKeyValueStore variables and add
System.Generics.Collections and
System.SyncObjs to the uses
clause of your WebModule Unit.

6 Run the web service again, click the Start
button and start the REST Debugger and

test if your web service still works and a GET

request of this URL yields the expected
valid JSON result.
http://localhost:8080/KeyValue

Response
http:/flocalhost:A080/KeyValue

200 : OK - 22 bytes of data returned. Timing: Pre: Oms - Exec: Oms - Post: Oms - Total: Oms

Headers Body — Tabular Data

Content 15 vahd J50M

ISOM Root Elerment:

{

"message": "It works"

1

Blaise Pascal Magazine 93 2021

@

Figure 5: Response

I Y . |
WEB SERVICE PART 2 - STORAGE

var WebModuleClass: TComponentClass = TWebModulel;
implementation

{%CLASSGROUP 'System.Classes.TPersistent'}
{$R *.dfm)}

uses

System.StrUtils, System.Generics.Collections, System.SyncObjs;

var
gLock: TObject;
gKeyValueStore: TDictionary<string, string>;

6 At the end of the WebModule unit add an
initialization section where you create both
the locking object and the Tdictionary.

initialization

gLock := TObject.Create;

gKeyValueStore := TDictionary<string, string>.Create;

gKeyValueStore.AddOrSetValue('0', 'Zero');

end.

N) A\

HI COMPANY

-est 1998-

THeE D

Page 5/12

This * makes sure that any URL that
starts with /KeyValue, but continues with
additional URL segments actually ends

up in this WebActionltem handler. So
http://localhost:8080/KeyValue/0

is now also handled by this action

handler.

6 Next we create a function to parse
both the URL query parameters as
well as the URL segment
parameters. Add a protected
function declaration to the

aRequestPath: string): TStringDynArray;

We now have an in-memory Key Value store. To
retrieve a value in response from a HTTP GET
request we need to do some additional legwork.

First we need to parse the parameters in a HTTP
request for our resource identifiers. In a HTTP
request to a REST webservice a parameter is
usually sent by using additional URL segments. So
to get the Value for Key O in the KeyValue resource
you'd use a URI like this
http://localhost:8080/KeyValue/0

For REST web services using URL segments is
the preferred and also the most simple method.
But if you want to you can also support
specifying them as URL query parameters,
starting with the question mark and separated
by ampersands.
http://localhost:8080/KeyValue?key=0

This second method is already supported in the
TWebRequest with the QueryFields method, but
to support using the preferred URL segment

WebModule.
private
{ Private declarations }
protected

function GetParameters(const aActionPath,

public
{ Public declarations }
end;

@® And write the following code to parse both
types of parameters from the URI

function TWebModulel.GetParameters(const aActionPath,

aRequestPath: string): TStringDynArray;

var

1ActionPathLength, 1RequestPathLength: Integer;
lParameter: string;
lParameters: TStringDynArray;

begin

SetLength(Result, 0);
l1ActionPathLength := aActionPath.Length;
1RequestPathLength := aRequestPath.Length;
if (1RequestPathLength > 1ActionPathLength) then
begin

lParameter := RightStr(aRequestPath,

1RequestPathLength - 1ActionPathLength);

lParameters := SplitString(lParameter,'/");

if (Length(lParameters) > 0) then

begin

Result := l1Parameters;

end

end;

end;

Figure 6: Response

parameters we need to add a bit of
code as well as change the PathInfo
of the Item for the KeyValue GET.

Modify the PathInfo for the Name
WebActionltem for the
KeyValue GET, and add a * at
the end like this (see figure 6)

DefaultHandler

WebaActionItemMumberGet
WebActionItemKeyValueGET

0 Editing WebModulel.Actions >
X & &

PathInfo Enabled Default Method Producer

¥ True & mtany
Mumber True mtGet
JKeyvalue* True miGet "

Blaise Pascal Magazine 93 2021

@ 5

\ | w, \) W N
WEB SERVICE PART 2 - STORAGE THE DerPHI COMPANY

-est 1998-

@ Then modify the OnAction event-handler for
the WebActionltemKeyValue GET Action

Page 6/12

procedure TWebModulel.WebModulelWebActionItemKeyValueGETAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
{GET - "Select" / Idempotent}
var
lParameters: TStringDynArray; 1Key, 1Value: string;
begin
1Key:=";
{parse URL query parameters - http://localhost:8080/ KeyValue?key=0}
1Key := Request.QueryFields.Values['key'];
if (1Key.IsEmpty) then
begin {parse URL segment parameters - http://localhost:8080/ KeyValue/ 0}
lParameters := GetParameters((Sender as TWebActionItem).PathInfo, Request.PathInfo);
if (Length(lParameters) > 0) then

begin
1Key := lParameters[0];
end;
end;
if not(lKey.IsEmpty) then
begin

Response.ContentType := 'application/json; charset=UTF-8';
gKeyValueStore.TryGetValue(lKey, 1Value);
if not(lvValue.IsEmpty) then
begin // {'result":["string"]}
Response.Content := {"result":["" + 1Value + "]};
end
else
begin // {"error":"Item not found"}
Response.Content := '{"error":"Item not found"}';
end;
Handled := True;
end
else {No parameters on URL for GET request;}
Handled:= False;
end;

Test if this works, either with the REST debugger
or using the web browser. The results should
look like this.

- Il:ncalhast:EDED_a‘KE‘VaIue?kE}rzD) X

&« G @ O localhost:8080/K

JSON Raw Data Headers

T

Save Copy Collapse All Expand All
result:

=1 L2

I
- localhost:23080KeyValue/D
<« C' | O localhost:8080/KeyValue/0

JSOM Raw Data Headers

Figure 7: Zero

prefered
Save Copy Collapse All Expand All

result:

H

Blaise Pascal Magazine 93 2021 @

\ |, \\i(N\ | ‘\Q(\
WEB SERVICE PART 2 - STORAGE THED

HI COMPANY

-est 1998-

Page 7/12

Our next major step is to add both a PUT and a POST handler.

When data is sent to a web service, the data can be sent as part of a URL segment like this
http://localhost:8080/KeyValue/1/0One but his method has some limitations, one obvious one
being that not all characters are allowed in URL segments as they have a special meaning. If you want
to send larger or more complex items you would use the HTTP requests body. We want to support
both methods of sending data to our web service.

@ Add a PUT handler to the WebModule unit, with method type mtPut.

(3 Editing WebModulel.Actions x
X 4 &

Mame PathInfo Enabled Default Method Producer
DefaultHandler / True 2 mtAny

WebActionItemMumberGet SMumber True miGet

WebActionItemkeyValueGET feyvalue® True miGet

WebActonItemKeyValusPLUT Jeyalue™ True miPut i

: £ . : Figure 8: Actions

@ Then code the handler

procedure TWebModulel.WebModulelWebActionItemKeyValuePUTAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
{PUT - "Insert or Update" / Idempotent}
var
lParameters: TStringDynArray;
1Key: string;
1Value: string;
begin
lParameters := GetParameters((Sender as TWebActionItem).PathInfo, Request.PathInfo);
if (Length(lParameters) > 0) then
begin
1Key := 1Parameters[0];
1value:=";
if (Length(lParameters) > 1) then
begin {Value is part or URL and a simple string}
1Value := lParameters[1]
end
else
begin {Value is send as content in the request and possibly a JSON or other complex string)}
1Value := Request.Content;
end;
if not(lValue.IsEmpty) then
begin
Response.ContentType := 'application/json; charset=UTF-8';
gKeyValueStore.AddOrSetValue(lKey, 1Value);
Response.Content :="' {"result":[]}";
Handled := True;
end
else
begin
Handled := False;
end;
end
else
begin
{Do not reply}
Handled := False;
end;
end;

Blaise Pascal Magazine 93 2021 @ 7

(N\) A, W \) |, W \

WEB SERVICE PART 2 - STORAGE Page 8/12

HI COMPANY

-est 1998-

Now test this new PUT method and insert
some data into your webservice using the

REST Debugger. Figure 9: Result
B RESTDebugger — [m} *
P
REST Debugger 10.4.2
w Embarcadero Technologies
Request
Request Parameters Authentication Connection
Method: URL:
PUT ~ | |httpi/flocalhost:8080/KeyValue/1/One ~ | X S T
Content-Type:
¥
New Request
Custom body:
Load Request
Save Request
Copy Compenents
o]
Response
http://localhost:B080/KeyValue/1/0ne
200 : OK - 14 bytes of data returned. Timing: Pre: Oms - Exec: 78ms - Post: Oms - Total: 78ms
Headers Body Tabular Data
Content is valid JSON JSON Root Element: X |
{
"result": [
1
1
Proxy-server disabled
—

And request the new item to see if it was
saved correctly.

localhost: 2080/ KeyYalue/1

| » =

<« C @ | localhost:8080/KeyValue/1

JSON Raw Data Headers
Save Copy Collapse All Expand All| 7 Filter J5

v result:

8: “one"

Figure 10: Result One

Blaise Pascal Magazine 93 2021 @

\ ., |, W \ | \‘1 N
WEB SERVICE PART 2 - STORAGE THE D

HI COMPANY

-est 1998-

Page 9/12

At first glance the result might seem odd, but
that is because the result in this case is
returned as a JSON array, and the first item of
an array has index 0. If you look at it in the
REST debugger you'll see that this is valid
JSON.

Response

http:/flocalhost:3080/KeyValue/1
200 : OK - 18 bytes of data returned. Timing: Pre: Oms - Exec: 31ms - Post: Oms - Total: 31ms

Headers Body Tabular Data

Content is valid 150N J50M Root Element:
{

"result"; [
"One"
1
h

Figure 11: Result One

@ We will do the same for POST. We add a
handler and use method type mtPOST.

(3 Editing WebModulel Actions ¥
B £ &

Mame PathInfo Enabled Default Method Producer
DefaultHandler) True & mtAny

WebActionItemMumberGet Mumber True mtGet

WebActionItemkeyValueGET fKeyvalue® True mtGet

WebActionItemKeyValugPUT fKeyvalue™ True mtPut

WebActionItemKeyValuePOST KeyValus® True miFost "

Figure 12: Post

Blaise Pascal Magazine 93 2021 @ 9

Tuae DerPa1 COMPANY

-est 1998-

WEB SERVICE PART 2 - STORAGE

® And the code

procedure TWebModulel.WebModulelWebActionItemKeyValuePOSTAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
{POST - "Update"}
var
lParameters: TStringDynArray;
1Key: string;
1Value: string;
begin
lParameters := GetParameters((Sender as TWebActionItem).PathInfo, Request.PathInfo);
if (Length(lParameters) > 0) then

begin
1Key:= 1lParameters[0];
1Value:="};

if (Length(lParameters) > 1) then
begin {Value is part or URL and a simple string}
1Value := 1Parameters[1l]
end
else
begin {Value is send as content in the request and possibly a JSON or other complex string;}
1Value := Request.Content;
end;

if not(lvValue.IsEmpty)

then
begin
Response.ContentType := 'application/json; charset=UTF-8';
gKeyValueStore[lKey] := 1Value;

Response.Content :="' {"result":[1};
Handled:= True;
end
else
begin
Handled:= False;
end;
end
else
begin
{Do not reply}
Handled:= False;
end;
end;

Test it with the REST Debugger. First add an
item with Key 1 and Value One and then
update this existing item using POST, changing
the Value to something other than One. In my
example | used Een, which is the dutch word
for One. You probably never guessed you’'d
learn a dutch word from reading this article.

Blaise Pascal Magazine 93 2021 @

Page 10/12

10

WEB SERVICE PART 2 - STORAGE

Tuae DerPa1 COMPANY

-est 1998-

Page 11/12

B RESTDebugger - [m} *
-
REST Debugger 10.4.2
w Embarcadere Technologies
Request
Request Parameters Authentication Connection
Method: URL:
POST ~ | |httpi/flocalhost:B080/KeyValue/1/Een ~ | X S s
Content-Type:
¥
Mew Request
Custorn body:
Load Request
Save Request
Copy Components
Response
http://localhost:B3080/KeyValue/1/Een
200 : OK - 14 bytes of data returned. Timing: Pre: Oms - Exec: 47ms - Post: Oms - Total: 47ms
Headers Body Tabular Data
Content is valid JSON JSON Root Element: X |

i
"result"; [
1

i

Proxy-server disabled

Figure 13: Post

And a request in the web browser to verify it
worked.

localhost: 3080/ KeyWalue/1 X

J50M Raw Data Headers
Save Copy Collapse &Il Expand &l 7 Filter J5C
w result:

a: "Een”

<« C @ | D localhost:8080/KeyValue/1

Figure 14: Result: Een

At this point you may have already run into a
potential issue we just introduced when
adding the PosT method. What happens if you
try to POST a Value for a non-existing key?

Just try it out with the REST Debugger.

We need to improve on this, but we will do so
in our next article.

Blaise Pascal Magazine 93 2021

@ Ourlast HTTP Command will be the
DELETE. Just add it to the handlers as
before, this time with mtDELETE .

@ 11

WEB SERVICE PART 2 - STORAGE

HI COMPANY

-est 1998-

THE D

Page 12/12

G Editing WebModulel.Actions

2R 4%

Mame PathInfo
DefaultHandler !
WebActionItemMumberGet /Mumber
WebActionItemkeyValueGET Jkeyvalue®
WebActionItemkeyValusPUT fKeyWalue™
WebActionItemkeyValuePOST fKeyValue™

WebActionItemkeyValueDELETE KeyValue™®

>
Ernabled Default Method Producer
True B mtAny
True miGet
True mizet
True miPut
True miPost
True miDelete

Figure 15: mtDelete

‘B The code is straightforward:

procedure TWebModulel.WebModulelWebActionItemKeyValueDELETEAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

DELETE - "Delete"}

var
lParameters: TStringDynArray;
1Key: string;

begin

lParameters := GetParameters((Sender as TWebActionItem).PathInfo, Request.PathInfo);

if (Length(lParameters) > 0) then
begin
1Key := l1Parameters[0];
gKeyValueStore.Remove(lKey);

Response.ContentType := 'application/json; charset=UTF-8';

Response.Content := "{"result":[]};
Handled:= True;
end

else {No parameters on URL for GET request}

Handled:= False;
end;

You may have noticed that we left out URL query
parameter parsing in the PUT, POST and
DELETE. This was intentional, as using URL
segment parameters is the preferred method for
a REST web service. However due to the
limitations of URL segment parameters, you

As a teaser we also added a glock object, but
we did not actually write any code for it. We
will do that in our next article, where we’ll add
some code to make sure any access to our in-
memory Key Value store is handled in a thread
safe manner. In that next article we will also

may wish to add URL query parameters for the
PUT/POST and DELETE as well. This could be
done quite easily with a duplicate of the sample
code from the GET request handler.

A short recap of the things we have done in this
article. We created a GET request that correctly
parses both URL query parameters and URL
segment parameters and returns a value from
the in-memory Key Value store. We also created
PUT and POST requests that handle passing
content as part of the URL segment, for short
values, as well as from the HTTP content
stream, for larger more complex values.

Blaise Pascal Magazine 93 2021

&

add error handling and of course expand our
Web Service client to consume our web
service. There might even be some JavaScript
code to consume our web service and further
on some additional JSON serialization. Stay
tuned!

12

This series of articles is about writing your own web services server
and client in Delphi. The approach of all articles is pragmatic.

The first article introduced some of the concepts you need to know
and shows you how to create and consume your own web service in
Delphi with just the GET request.

The second article showed you how to update the data in the web
service and how to create in-memory storage for the web service.

This third article shows you how to consume and use your web
service from both Delphi clients on Windows and from a web page
with JavaScript.

It also adds error handling and tweaks some code on the web
service which were left as teasers in the previous article.

The web service from the previous article is a functional web service
that uses the HTTP commands GET, POST, PUT and DELETE to get,
update, insert or delete items in a key value store.

The key value store holds string keys and string values, and can be
used to store JSON or other string based data.

The REST endpoint we defined was
http://localhost:8080/KeyValue

and we can GET or DELETE a value for a given key using parameters
in the URL segment.

http://localhost:8080/KeyValue/0

Similarly we can POST (update existing) or PUT (insert or replace)
data

http://localhost:8080/KeyValue/1/0One

but remember that you need to send a POST or PUT HTTP
command, which you can do with the REST debugger.

Just opening the above link in a browser would send a GET HTTP
command.

The PUT and POST also allow for sending large or complex data
within the body of the request instead of using the URL segment.

The Delphi web service client we created in
the previous article looked like this

G Web Service Client EI@

http://localhost:8080/KeyValue/0

MemoResponse \'ﬁ ‘%

NetHTTPClient MNetHTTPRequest

Blaise Pascal Magazine 94/95 2021 @

o7

WEB SERVICE PART 3 - CLIENT
By Danny Wind -L:e' ﬂm

and we will use this web service client as a
starting point for our next steps to create a
web service client with posT, PUT and
DELETE which looks like this:

THE

GWeb Service Client EI@
hitp://localhost:8080/KeyValue/0 GET POST
PUT | DELETE
MemoBody .
6 =
MNetHTTPClient MNetHTTPRequest
MemoResponse

Open the previous Web Service Client

@ Add a GridPanel under the GET button
(you can move components around in the
Structure Viewer, left in the IDE)

@ sct the Align of the ButtonGet to None
and the Anchors to empty

© Add three additional Buttons to this
GridPanel and rename them to
ButtonPost,ButtonPut, ButtonDelete

(4 Temporarily set Align of MemoResponse
to None and move it down

(5]

Add a Memo to the Form, place it between
the MemoResponse and the Edit and then
align Top
O set Align of MemoResponse back to Client
(7]

Add an onclick event-handler on the
Button Put to add the code to Insert or
Replace a value in the web service

procedure TFormMain.ButtonPUTClick(Sender: TObject);

var
lContentStream: TStringStream;

begin
{ Encode string stream as UTFS8 }
lContentStream:= TStringStream.Create(MemoBody.Lines.Text, TEncoding.UTF8);
1ContentStream.Seek(0, TSeekOrigin.soBeginning);
NetHTTPRequest.Put(EditURL.Text, 1ContentStream, nil, nil);

end;

In this code we use the body of the HTTP request
to send our data with the NetHTTPRequest. Put.
We could also have added it as a URL segment
parameter in the Edi tURL. Text, but that would
have more limitations,

Blaise Pascal Magazine 94/95 2021 @

-est 1998-

Page 2/14

98

in size and in the supported or allowed
characters. Because we use a stream, we also
need to manually encode the text from the

Memo into UTF-8 which is the default for)f
sending string data to a web service.

This is also more efficient than the Windows
default uTF-16 encoding, resulting in an up to

50% smaller content.

O Test if it works by running the web service
server from the previous article. You can
also use the completed version of the web
service server from this article

O Use the following PuT URL to place a value
in key 1 and then use GET to retrieve it.
The result in the web service client should
look like this

(%) Web Service Client — O >

http://localhost:8080,/Keyvalue/1 | GET | | POST |

| PUT | DELETE

Blaise Pascal Magazine
Web Services

OO0 000D PHe

{"result":["Blaise Pascal Magazine
Web Services

1%
8O- N 00O A

——

@ nNotice how the carriage return - line feeds
have also been stored in the key value
store and they result in multiple lines in the
MemoResponse. We should encode these
special characters to conform to JSON
standards to prevent other clients from
rejecting our malformed JSON

- localhost: 2080/ KeyValue/1 X

<— C | D localhost:8080/KeyValue/1 e | 3 =

J50M Raw Data Headers

Save Copy Collapse All Expand Al 7 Filter JSOM

SyntaxError: 150M.parse: bad control character in string literal at line 1 column
35 of the JSON data

Blaise Pascal Magazine 94/95 2021 @

99

@ To correctly store a string as a JSON string
we need to add JSON string conversion for
the control characters and enclose it in

quotation marks. We use the function
TJSONString.ToJSON (Options:

TJSONOutputOptions) to convert the
string into a JSON string. Modify the code
as follows

procedure TFormMain.ButtonPUTClick(Sender: TObject);
var
1ContentStream: TStringStream;
1JSONString: TISONString;
begin
{ Encode string stream as UTFS8 }
1JSONString := TISONString.Create(MemoBody.Lines.Text);
1ContentStream:= TStringStream.Create(
1JSONString.ToJSON([TJSONAncestor.TJSONOutputOption.EncodeBelow32]),
TEncoding.UTF8);
1JSONString.Free;
1ContentStream.Seek(0, TSeekOrigin.soBeginning);
NetHTTPRequest.Put(EditURL.Text, 1ContentStream, nil, nil);
end;

With this TogsoN function the control
characters below U_001F (32) are encoded,
where some of the special characters such as
carriage return and line feed are changed to \r
and \n. Note that | choose to use TogJsoN with
only EncodeBelow32 specified. | do not want
Unicode characters above 127 to be encoded
to \uxxxx, where xxxx is the hexadecimal
value of the UTF-16 characters, as that

would increase the length of our content.
Especially since the latest 2017 ietc
specification states that JSON interchange must
support all UTF-8 characters and escaping
normal UTF-8 characters is not necessary.

@ We also need to change a bit of code in
the server, als the stored JSON string already
has its own quotation characters.

For the GET method we modify the code that
returns the JSON array and remove the quotes.
We assume that each stored value is valid JSON
on its own.

Blaise Pascal Magazine 94/95 2021 @

100

WEB SERVICE PART 3 - CLIENT

Response.Content := '{"result":[' + 1Value + ']}’
{ this was Response.Content := '{"result":[" + [Value + "]}';}

® Also change the test value for key O

gKeyValueStore.AddOrSetValue('0', ""Zero™);
{this was gKeyValueStore.AddOrSetValue('0', 'Zero);}

This is not totally foolproof, as it assumes
anyone pushing data into the key value
store adds valid gJsoN, but it's good
enough for our simple web service.

@ If we now test the service by storing
the two lines we get this correct result in
the browser

- localhost: 3080/ KeyValue/1 X
<« C | [localhost:8080/KeyValue/1 e | | =

J50ON Raw Data Headers

Save Copy Collapse All Expand All
result:

a: Blaise Pascal Magazinehrnkeb Services

® All looks OK, however if this looks strange
to you, remember that we return a JSON
array of values with one item (0) with the
value for key 1

® Back to the client

® The following code implements the PoST
functionality

procedure TFormMain.ButtonPOSTClick(Sender: TObject);
var
lContentStream: TStringStream; 1JSONString: TISONString;
begin
{ Encode string stream as UTF8 }
1JSONString:= TISONString.Create(MemoBody.Lines.Text);
1ContentStream:= TStringStream.Create(
1JSONString.ToJSON([TJSONAncestor.TIJSONOutputOption.EncodeBelow32]),
TEncoding.UTF8);
1JSONString.Free;
lContentStream.Seek(0, TSeekOrigin.soBeginning);
NetHTTPRequest.Post(EditURL.Text, 1ContentStream, nil, nil);
end;

® The code is the same as the PUT, with one
additional condition that a POST to a
non-existent key will fail with an internal
error. Note that the web service server
neatly translates such an internal exception
to a HTML page

Blaise Pascal Magazine 94/95 2021 @

Page 5/14

101

@ Web Service Client

http://localhost:2080/KeyValue/1 e [post |

MemoBody

<html><body><hl:>Internal Applicaticn Error</hl:
<p>Item not found
<pr<hr width="188%"><is/KeyValue/1</1></body></html>

RS

@® Instead of this HTML page I'd like it to
return a JSON error

@) Open the web service server and find
the code that handles the POST in the
Web Module unit

{existing code}
procedure TWebModulel.WebModulelWebActionItemKeyValuePOSTAction ...

Response.ContentType := 'application/json; charset=UTF-8';
gKeyValueStore[lKey] := 1Value;
Response.Content := '{"result":[1}";

Handled:= True;

[]
@ and modify it to return a JSoN formatted
error string if the key is not found in the key
value store

new code}
procedure TWebModulel.WebModulelWebActionItemKeyValuePOSTAction ...

Response.ContentType := 'application/json; charset=UTF-8';
if gKeyValueStore.ContainsKey(lKey) then
begin

gKeyValueStore[lKey] := 1Value;
Response.Content := "{"result":["OK"]}";

end

else

begin
Response.Content := '{"error":"Item not found"}';
end;

Handled := True;

@ and instead of returning an empty JSON
array, we now also return one array item
with “OK”, making it easier to parse

@ After this code change the result after a
click on POST with a non-existent key
should look like this

Blaise Pascal Magazine 94/95 2021 @

102

-est 1998-

WEB SERV]CE PART 3 5 CLIENT THE HI COMPANY Page 7/14

(®) Web Service Client - O ®
http://localhost:3080/KeyVvalue/1 GET

PUT DELETE
MemoBody

{"error”:"Item not found™}

2 We go back to the web service client
and we finish the client side code with
the DELETE

procedure TFormMain.ButtonDELETEClick(Sender: TObject);
begin

NetHTTPRequest.Delete(EditURL.Text, nil, nil);

end;

% After which we have a fully functional web
services client

The web services client adds values as JSON
strings, the web services server stores these
as-is and when requested returns the JSON
value as the first item in a 3JSON array.

Maybe at this point you are wondering why we
use a JSON array to return just one item.

That is because using an array is a flexible way
of returning items with 3SON. We can use the
JSON iterator in a later article to parse for
multiple items, for instance if we request the
entire list, or if we want to return additional
items that describe the content of the value for
each key. We could put a value in the key value
store that is actually a BSON encoded binary
file with a descriptor that holds the file type
and return the descriptor, which could be a
MIME type, as an item as well.

On the subject of MIME types, there is a small
improvement you could make to the header
that is sent out by the server. It is currently just
a manual string

Response.ContentType := 'application/json; charset=UTF-8';

but you could change it to
Response.ContentType := 'application/json; charset='+ TEncoding.UTF8.MIMEName;

Blaise Pascal Magazine 94/95 2021 @ 103

WEB SERVICE PART 3 - CLIENT

This would result in almost the same string,
but uTF-8 would now be written in lower case.

'application/json; charset=utf-8'

Although using upper case is allowed, as the
charset specification is case-insensitive, the
default should be in lower case. | just made this
mistake when typing the article, as in normal text
| tend to use UTF-8.

Using TEncoding.UTF8 .MIMEName instead
makes sure | don’'t repeat that same mistake.

Another thing | forgot to mention was setting the
TNetHTTPRequest property Asynchronous to
True (default is False) in the web services client.
The code also works in synchronous mode, but it
is meant to be used asynchronously.

We also have some other things to do that we
didn’t get around to in the previous article. Let’s
revisit some code on the server side.

In our previous article we declared and created a
global lock variable, but we did not actually use
it. If you have Show Error Insight levels set to
“Everything” under Tools-Options in Delphi
10.4.2 you'll get a visual indication the code is
incomplete if you open the WwebModule unit

initialization
0 gLock := TObject.Create;

© H2077 Value assigned to 'glock’ neverused [<String, string>.Create;

gkeyvaluestore. AddUrsetvalus('e', 'Zero');

end.

We will add this code soon, but first we dig
into the reason why we need to add a global
lock.

You may recall that a Web Broker application
only has one WebModule class variable as you
can see in the interface section of the
WebModule unit

var
WebModuleClass: TComponentClass = TWebModulel;

However for each request a new WebModule
instance of this WebModuleClass type may be
instantiated and each incoming request is
handled in its own thread.

Blaise Pascal Magazine 94/95 2021

@

THE

HI COMPANY

-est 1998-

Page 8/14

104

g -

Instantiation of WebModules is handled by the .

WebRequestHandler. WebModule instances :' ' E
(of the webModuleClass) are kept in a poolin =

the handler, if one instance is available the £ .
WebRequestHandler will use that one, if not a |

new one will be created.

Threading is handled by the Indy HTTP Server.

By default the IdHTTPServer handles each

request by creating its own new thread. If we

would create the web service server as ISAPI

or Apache the threading would be handled

there.

For us knowing that we have multiple
instances of WebModules used from multiple
threads at the same time, means we will need
to serialize access to our one global in-memory
Key Value store to make it thread safe. This is
where we will use the global lock variable
gLock as a companion lock object for the
TDictionary in combination with Tmonitor.

@ In each of the methods that access the
Key Value store we add a lock by
surrounding it with TMonitor.Enter and
Exit. For the GET web action item
handler the new code looks like this

Blaise Pascal Magazine 94/95 2021 @ 105

L e

Response.ContentType :=

'application/json; charset='+ TEncoding.UTF8.MIMEName; |]
if TMonitor.Enter(gLock, 500) then *
begin

try]

gKeyValueStore.TryGetValue(lKey, 1Value); i I ¥ 1
finally
TMonitor.Exit(gLock);

end;
end;
if not(lvalue.IsEmpty) then
begin

// {"result":[JSONValue]}
Response.Content := "{"result":[' + 1Value + ']}’
end
else
begin
// {"error":"Item not found"}
Response.Content := '{"error":"Item not found"}';
end;
Handled := True;

The TMonitor.Enter has a timeout
parameter, if the lock is not acquired within
500 milliseconds it will return False and the
TryGetValue will not be executed.

Usually the lock will be acquired within < 1
ms, but if the Key Value store is busy from
multiple threads it may take longer and we do
not want to wait indefinitely. Instead getting
value will then fail and return a JSON error with
Item not found. Alternatively you could also
handle this with HTTP error codes as some
web services do.

@ We add similar code for the DELETE web
action item handler.

Response.ContentType := 'application/json; charset='+ TEncoding.UTF8.MIMEName;
if TMonitor.Enter(gLock, 500) then
begin
try
gKeyValueStore.Remove(lKey);
finally
TMonitor.Exit(gLock);
end;
end;

%y and the PuT web action handler

Response.ContentType :=
'application/json; charset='+ TEncoding.UTF8.MIMEName;
if TMonitor.Enter(gLock, 500) then
begin
try
gKeyValueStore.AddOrSetValue(lKey, 1Value);
finally
TMonitor.Exit(gLock);
end;
end;

Blaise Pascal Magazine 94/95 2021 @ 106

-est 1998-

WEB SERVICE PART 3 =4 CL]ENT THE HI COMPANY Page 11/14

@ and the POST web action item handler

Response.ContentType :=
'application/json; charset='+ TEncoding.UTF8.MIMEName;
if TMonitor.Enter(gLock, 500) then
begin
try
if gKeyValueStore.ContainsKey(lKey) then
begin
gKeyValueStore[lKey] := 1Value;
Response.Content := "{"result":["OK"]}";
end
else
begin
Response.Content := '{"error":"Item not found"}';
end;
finally
TMonitor.Exit(gLock);
end;
end;
Handled := True;

€) After which we have a fully functional web
services server

This web services server does have some
limitations. Because it is using a globally
locked key value store its performance will
suffer as we get more simultaneous users. If
they mostly just GET data the penalty for
global locking is low as getting data out of a
dictionary based key value store is a O(1)
operation. It is very quick. However inserting
(PUT) or deleting (DELETE) data from the
key value store is somewhat slow as it needs
to (re)calculate hash values. If you have many
concurrent users that also write a lot | would
not use this setup, but instead just use a fast
database backend. Using a database backend
has the added benefit of persistence.

The current key value store holds values in
memory, after a reset of the web service the
data is gone. For simple web services that
need this type of transient storage this
approach works fine.

It's time to have some fun with our web
services server. Let’s add some JavaScript to
the mix.

In a previous article I wrote that a web

service is not that much different from
serving web pages from a web server.

In fact you can add web page producers

to the web service server we just wrote

and have it return a HTML page.

We have already seen that when it returned an
internal exception as a HTML page.

Blaise Pascal Magazine 94/95 2021 @ 107

The default handler in the Web Module unit d
does the same thing,it just returns some HTML.

This means that we could add an URL to the s
web service server that would result in a

webpage with some HTML and a piece of
JavaScript that would in turn request data

from the same web service.

Kind of like a roundtrip, where the web service

asks itself a question. This way we would let

the web services server serve a web page that

acts like a JavaScript client to the same web

service.

@ We add a new WebActionItem handler to the
WebModule unit, use the URL /JavaScript

and the method mtGet

(9 Editing WebModulel.Actions X
02X 44

Mame PathInfo Enabled Default Method Producer
DefaultHandler / True i mbAny
WebActionItemMumberGet Mumber True mtGet
WebActionItemKeyValueGET fKeyvalue® True mtGet
WebActionItemKeyValuePLT fEeyvalue® True mtfut
WebActionltemKeyValuePOST KeyValue® True mtfost
WebActionItemKeyValueDELETE KeyValue® True miDelete

WebActionItemJavaScript JJavaScript

& In the handler we respond with a piece of
HTML with JavaScript code

<html>
<head><title>Call Number with JavaScript</title></head>
<body>Call Number with JavaScript
<button onclick="getNumber () ">
Get Number in Console Log (view Ctrl-Shift-I).</button>
<script type="text/javascript">
function getNumber ()
{ let url = 'http://localhost:8080/Number’';
fetch (url) . then (resp=> resp.json () .then (j=>
console.log('\nNumber: ', j)));
}
</script>
</body>
</html>

Blaise Pascal Magazine 94/95 2021 @

108

€® The resulting Delphi code is this

procedure TWebModulel.WebModulelWebActionItemJavaScriptAction
(Sender: TObject;Request: TWebRequest;
| Response: TWebResponse; var Handled: Boolean);
begin

Response.ContentType :=
'text/html; charset='+ TEncoding.UTF8.MIMEName;

Response.Content :=
'<html>' +
'<head> <title>Call Number with JavaScript</title></head>" +
'<body>Call Number with JavaScript ' +
'<button onclick="getNumber()">Get Number in Console Log (view Ctrl-Shift-I).</button>" +
'<script type="text/javascript">" +
'function getNumber() {' +
"let url = "http://localhost:8080/Number";"' +
' fetch(url).then(resp=> resp.json().then(j=> console.log('"\nNumber: ", j)));' +
DU
'</script>' +
'</body>"' +
'</html>";

end;

& For web debugging | usually use either
Firefox or Chrome, you can start the web
debugging with the key combination
Ctrl-Shift-1

€ Run the web services server, click the Start
button, then the Browser button and open
the JavaScript URL
http://localhost:8080/JavaScript

€ The result after clicking the JavaScript button
on the page would look like this

- Call Nurnber with JavaScript X

(— & | @ [localhost:8080/)avaScript e | | =

Call Number with JavaScript
| Get Number in Console Log (view Ctrl-Shift-1). |

Y {:]'Inspectcur (] Console [Debugger |j-_| see M
T 7 Filter Output e

Errors Warnings Logs Info Debug C55 XHR Requests

Javascript:l:11s
Number: 11

» G}

Blaise Pascal Magazine 94/95 2021 @

109

WEB SERVICE PART 3 - CLIENT

€ The output of clicking the Get Number
button is only viewable in the Console view
in the web debugger (Ctrl-Shift-I)

The web service server we made can be used
from any other platform that supports web
services, from JavaScript, Python or PHP or
any other language or platform.

This makes it a simple solution to enable
sharing data from your Delphi application with
other third-party solutions.

If you start using your Delphi web service from
other platforms you may run into caching
issues and having to configure Cross-Origin
Resource Sharing.

We will look into these issues in our next article
on deployment of the web service server.

A short recap of the things we have done in
this article. We created a posST, PUT and
DELETE request to the web services client.
We also modified the data to be passed as a
JSON string adding explicit UTF-8 encoding of
the body content that is sent over the network
to the web services server. We added thread-
safety code to the web service server and to
top it all off we added a HTML page with some
JavaScript code that does a roundtrip and asks
our web service for a random number.

In our next articles, we will take a look at ISAPI
and Apache versions of our web services server
and also how to deploy each of these to a
server and allow access to our web service.
Along the way we will tweak some settings to
improve interoperability, with HTTP headers
for caching and CORS and we will configure our
web service for better performance. We may
also add some more JSON support, parsing the
result array and adding serialization of objects
or even use the web service to store other
items besides plain text.

Maybe that last bit will be in another article
though. Stay tuned!

Blaise Pascal Magazine 94/95 2021 @

THE

HI COMPANY

-est 1998-

Page 14/14

110

WEB SERVICE PART 4: Page 1/23
DEPLOY TO

INTERNET INFORMATION SERVICES
By Danny Wind

This series
of articles is about writing your own
web services server and client in Delphi. The approach
of all articles is pragmatic. The first article introduced some of
the concepts you need to know and shows you how to create and
consume your own web service in Delphi with just the GET request. The
second article showed you how to update the data in the web service and
how to create in-memory storage for the web service. The third article
showed how to consume and use your web service from both Delphi
clients on Windows and from a web page with JavaScript. This
fourth article is about deploying your web service to the
Internet Information Services (IIS) server on

Windows. . 5
What are the deployment options for a web service

written in Delphi? If you create a new web application in
Delphi you have the following options in the wizard

Apache dynamic link module An Apache module. Apache has support for HTTP and
HTTPS. The current Apache 2.4 is supported on x64 Linux.
Stand-alone console application A stand-alone WebBroker console application is a
web server that has a text-only user interface.
It supports HTTP using an Indy HTTP server component.
Stand-alone GUI application A stand-alone WebBroker application is a web server that
displays a form. It supports HTTP using an Indy HTTP
server component.
ISAPI dynamic link library An ISAPI library integrates with IIS. IIS has support for HTTP
and HTTPS.
CGlI stand-alone executable A CGI executable integrates with a web server.
Note that CGl is typically slower and more difficult to debug
than ISAPI or an Apache module.

The stand-alone options do not use the IIS or Apache web server
platform for receiving and handling HTTP requests, but instead rely on
the Indy HTTP web server component. This works reliably and can even

support HTTPS with OpenSSL, although the wizard suggests otherwise.

However it is less suited for server environments exposed to the public
internet, which need to be maintained, updated and monitored to remain
secure. Stand-alone is more suited for static installations hidden inside a
VPN or for embedded industrial installations.

One stand-alone option is missing from this list; it’s also possible to

manually create a Windows Service application and embed the web service
into it. This uses the same Indy web server as the other Stand-alone options.

Blaise Pascal Magazine 96 2021 @ W

WEB SERVICE PART 4:

Page 2/23
DEPLOY TO INTERNET INFORMATION SERVICES

Of these options ISAPI and Apache make the most sense for
regular deployment. Both ISAPI and Apache can be run on
default web server installations of Windows and Linux. You can
just order a Virtual Private Server with any hosting provider and
have your web service up and running on the internet within a
couple of hours. Of course you can also use your own server.
Because IIS and Apache are widely supported you can set up
monitoring on the web server with one of the many available tools
or delegate maintenance and administration to a third-party system
administrator. System administrators are usually well versed in
handling security, updates and monitoring of IIS and Apache
installations. Both IIS and Apache also support HTTPS encryption,
made easy through Let’s Encrypt certificates or, if you need, higher
level certificates from one of the other Certificate Authorities.

In this article we will focus on using IIS and ISAPI for our web
service and we will deploy it to a development machine.

We start by enabling Internet Information Server on a plain
Windows-10 machine. This could be the same (virtual) machine
where you have your Delphi development installed, but any other
Windows-10 machine or virtualized environment is fine as well.

If you are running a Windows Server environment you probably
already have Internet Information Services installed through your
server roles administration panel. In that case you can skip ahead

towards creating the ISAPI itself in Delphi at step 7.

For those of us who are using plain Windows-10 we install the

Internet Information Services server through the Control Panel with
Programs and Features

Blaise Pascal Magazine 96 2021 @ o8

WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

@ Click on the search icon next to the start menu and type “Control”.
Note that even if you are using a non English language version of
Windows this will still lead you to the Control Panel Desktop app.

All Apps Documents Settings Photos
Best match
— Control Panel
“s Desktop app =
Apps
(21 Settings >
Run >
o Windows Administrative Toaols b
Documents
| ControlsDema.identcache b
| ControlsDemo.res b
Settings
- [Control Panel

wr Controlled folder access
4 [EZ » Control Panel »

¥ App & browser control
Adjust your computer's settings

[Eye control settings

System and -
i b
Security i
Review your
computer's status
Save backup copies of

Connect wireless Xbox One
controllers

£ control| your files with File
History
— - Backup and Restore
@) = P
=l m ‘ i‘ @ (Windows 7)

. Network and
. kj] Internet
& View network status
and tasks

® Inthe C | Panel sel “p / Hardware and
n the Control Panel select "Program ﬂ. i
View devices and
printers
Add a device

Programs

Page 3/23

View by: Category ¥

User Accounts
%) Change account
type

Appearance and
Personalization

Clock and Region
Change date, time, or
number fermats

Ease of Access

Let Windows suggest
settings

Optimize visual display

[’] Uninst| programs

and more.

Uninstall programs or Windows
features, uninstall gadgets, get new
pregrams from the network or enling,

Blaise Pascal Magazine 96 2021 @

indows features on or off”

ﬁ Programs

— v ﬂ # Control Panel * Programs w | () Search Control Panel 2

Control Panel Home

\-I Programs and Features
Ef Uninstall a program @Turn Windows features on or off

Systern and Security

View installed updates

Network and Internet Run programs made for previous versions of Windows
Hardware and Socund How to install 2 program

e == Default Programs
User Accounts i Change default settings for media or devices

Appearance and
Personalization

Clock and Region

Ease of Access

nternet Information
Services on. This will automatically select almost all of the features that we need. We will
do additional configuration steps later on

(5 Windows Features — O et

Turn Windows features on or off (7]

To turn a feature on, select its check bowx, To turn a feature
off, clear its check box. A filled box means that only part of
the feature is turned on.

= E‘__,] Internet Information Services ~
O | FTP Server
= E‘,_ﬂ Web Management Tools
L1 | 1156 Management Compatibility
4 | 1IS Management Console
[l . lI5 Management Scripts and Tools
(1 | IS Management Service
= [m] |, World Wide Web Services
[m] | Application Development Features
[m] ~, Comrmon HTTP Features
[m] | Health and Diagnestics
[m] . Performance Features
[m] | Securty

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 5/23
DEPLOY TO INTERNET INFORMATION SERVICES

© Windows will now install [IS. We can check if the install was successiul by
navigating to localhost in our browser http://localhost

IS Windows e m}

O, httpi/flocalhost] mn a & =

=R Windows

Internet Information Services

Welcome Bienvenue Tervetuloa
L£3z% Benvenuto &l
‘_ 3 h.. Bienvenido Hos geldiniz | o'xan oona Welkom
Bem-vindo L

]
KoAwg [lo6po
Vitejte OploaTe \ ymmen noxanosars | Udvozoljiik

Microsoft Willkommen [Melkemmen -

@ We now have an SEerver running on our

The Internet Information Services server, or IIS server, can be used to serve several types of web
site and web service content. The most apparent one is the html page that we just requested by
visiting localhost. It's simply a file located in the IIS root folder.

C:\inetpub\wwwroot

| = | wwwroot — d x

Home Share View e

<« v <« Local Disk (C:) » inetpub » wwwroot v Search wwwroot 2

~

B This PC A [Name Date modified Type

3D Objects B iisstart.htm
I Desktop =l iisstart.png
|if| Documents

; Downloads

J‘) Music

T
237202

2:37PM Firefox HTML Doc|
2:37PM PNG File

P

07
e

B/
B/

%]
| ¥¥)

&= Pictures

B Vvideos

i Local Disk () vl 5

2 items =

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 6/23
DEPLOY TO INTERNET INFORMATION SERVICES

Any other htm file that you place at this location
will be available in the IIS web server as a web page.

Please note that with installing IS on your machine it also opened port
80 (HTTP) and port 443 (HTTPS) for external connections. At the end of
the article we’ll show you how to easily block or allow traffic to these
ports in the Windows Firewall, as you may not want IIS available to
everyone all the time, especially if you are on a public internet location,
such as an airport.

One of the things that can be hosted by an IIS server is an ISAPI
extension. ISAPI stands for Internet Server Application Programming
Interface, and it allows us to create a dynamic link library (DLL) that
adds to the functionality of the IIS server.

Our next step is to create an ISAPI dll in Delphi. The code from the web

service we wrote in the previous article will be shared and embedded
within this ISAPI dll.

@ Create anew temporary Project Folder, eg \ISAPI

O n Delphi create a new Project with File | New - Other
and under Delphi - Web choose Web Server Application

& New ltems
F= Delphi .‘l Web Server Application
= ActiveX B2 Creates a stand-alone web server application or an 115
B Database web server plugin that uses WebEBroker components to
process HTTP requests and generate web pages.
= DataSnap
B= DUnitX gAE SOAP Server Application
o . SOAP Creates a CGI, IS4P! or Indy Web Application that can
P. r
Individual Files expose interfaces as Web Services,
= Multi-Device
= RAD Server
= Web
= Windows
Bs Other
Template Libraries ~ 0K Cancel Help

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

© In the wizard choose Windows and then ISAPI Dynamic Link Library

@ save the project as WebServicelSAPI in the temporary folder \ISAPI
@ Now take a look at the project manager. Notice how the ISAPI project has the same
structure as the previously created WebServiceServerGUI project. It is just a project file
and a WebModuleUnit
@ There is a difference between the two WebModuleUnit files. The one from
WebServiceServerGUI has the ClassGroup property set to the Vcl framework , while the
one from the WebServicelSAPI has the ClassGroup property set to the framework neutral
setting. We will change that after we merge the two projects

Page 7/23

Object Inspector
WebModule1

Properties Events

Actions TWel

LiveBindings Desi

Name WebMod
OldCreateOrder [] False

Tag 0

ClassGroup

In order to merge the new
® WebServicelSAPI with the existing
WebServiceServerGUI we can simply copy the
two WebServicelSAPI project files over to the
WebServiceServerGUI directory. By doing that
we let the new ISAPI project use the existing
WebModuleUnit from the WebServiceServerGUI
as they are in the same folder

copy \ISAPI\WebServiceISAPI.dpr
copy \ISAPI\WebServiceISAPI.dproj

\WebServiceServerGUI
\WebServiceServerGUI

/ = | ISAPI —] X
Start Delen Beeld (7]
Py 3~ Al
= e « Verplaatsen naar v) Verwijderen ¥ v —J: e
(= 5= Niets selecteren
Aan Snelle toegang Kopiéren Plakken (oDié - =1 iz Nieuwe Eigenschappen
o) Kopiéren naar i Naam wijzigen map 9 o PP B <etectic omkeren
Klembord Organiseren Nieuw Openen Selecteren
<« v <« Blaise_WebServices_2021 » Source » WebServicePartd > [SAPI » v O Zoeken in ISAP
P 3D-objecten A O Naam Gewijzigd op Type Grootte
| Afbeeldingen _ history 23-6-2021 15:0: Bestandsman
I Bureaublad 7| WebModuleUnit1.dfm 23-6-20; FM-bestand KE
2| Documenten | WebModuleUnit1.pas 23-6-2021 15 PAS-bestand 1 kB
- Downloads | WebServicelSAPI.dpr 23-6-2021 15:02 DPR-bestand 1 kB
D Muziek WebServicelSAPI.dproj 2021 15:02 DPROJ-bestand 55 kB
B Video's WebServicelSAPI.dproj.local 115 CAL-bestand 1 kB
WebServicelSAPl.identcache 2 E ACHE-be B

‘o Windows (C:)

L¥]

7items 2 items geselecteerd 55,3 kB

Blaise Pascal Magazine 96 2021

| = | WebServiceServer

b
D ‘7{‘ « Verplaatsen naar =) Verwijderen - %"
el

Beeld

._3 - HﬂAIIes selecteren

i = - I 55 Miets selecteren
Aan 5nelle toegang Kopiéren Plakken [E Kapiéren naar = MNaam wiizigen MNieuwe Eigenschappen :
vastmaken El g R Eﬁ He map - EH Selectie omkeren
Klembord Jrganiseren Mieuw Jpenen Selecteren
« v A | = Source » WebServicePartd » WebServiceServer » v | D 2 Zoeken in WebServic...
~ - e A
I Deze pe 0 MNaam Gewijzigd op Type Grootte
I 3D-objecten _3 FormUnit1.dfm 17-2-2021 15:00 DFM-bestand 2 kB
=] Afbeeldi _EI FormUnit1.pas 4-3-2021 14:00 PAS-bestand 3 kB
eeldingen
EI WebModuleUnit1.dfrm 28-3-2021 1821 DFM-bestand 2 kB
Bi blad
B mcodi 3 WebModuleUnit1.pas 10-5-2021 17:30 PAS-bestand 11 kB
Heenmcten [| WebServicelSAPLdpr 23-6-2021 15:02 DPR-bestand 1kB
4 Downloads 1| | WebServicelSAPI.dproj 23-6-2021 15:02 DPROJ-bestand 55 kB
J\ Muziek _}I WebServiceServerGULdpr 4-3-2021 1414 DPR-bestand 1kB
B video's D WebServiceServerGUIl.dproj 4-5-2021 14:14 DPROJ-bestand 43 kB
., Wind) D WebServiceServerGUl.dproj.local 4-3-2021 14:14 LOCAL-bestand 1kB
d [WebServiceServerGULidentcache 23-6-2021 16:44 IDEMTCACHE-best... 1kB v
13items 2 items geselecteerd 53,3 kB f=z| =]

® we can now add this new project to the Project
Group with a right-click in the Project Manager and Add
existing Project

WebModule1 T'WebModulel

. Properties Events jo
MahServical S AP o
WebServicelSAPLdp o ey
ﬁj o ﬁ F= S Fﬂ. @ wd $ i @ hd > LiveBindings LiveBindings Designer
ﬁ.‘ WebServicePartd Mame WebModulel
> (53] WebServiceServerGUl.exe OldCreateOrc [_] False
Tag 0

> [5] WebServiceClient.exe

L |-_-|"_§| WebServicelSAPILdI
) ‘h. Build Cenfigurations (Debug)
» 2= Target Platforms (Windows 32-bit)
> 5] WebModuleUnit1.pas

ClassGroup sses. | Persistent e

® Now open the WebServiceISAPI project from the Project Manager and open the WebModuleUnit.
As this WebModuleUnit is now shared with the VCL WebServiceServerGUI we need to change the
property ClassGroup to the framework neutral System.Classes.TPersistent

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4:
DEPLOY TO INTERNET INFORMATION SERVICES

® We also modify the target platform for this project to 64-
as ISAPI extensions in Windows-10 are by default 64-bit.
Right click on the project in the Project manager and
Add the Windows-64 bit platform

WebServicelSAPlL.dproj - Proje.. #
#5 WebServicePartd
EI'__l WebServiceServerGUl.exe
EI'__l WebServiceClient.exe
|3'__| WebServicelSAPLdI
:"-h- Build Configurations (Release)
= Target Platforms (Windows 64-bit)
> mm Windows 64-bit
= | WebModuleUnit1.pas
=) WebModuleUnit1.dfrm

(18] We do not need the 32-bit target platform for the ISAPI dll so you can remc
@ Now build the WebServicelSAPI dll to test if merging the projects was succ

By merging the files from the VCL standalone application WebServiceServerGUI wi
WebServicelSAPI dll project we can just develop and debug our web service with tl
application, and then deploy it with a build of the WebServicelSAPI dll. It's much e
to debug a VCL application than debugging an ISAPI dll. Because the VCL version ¢
web service uses port 8080 and IIS by default uses port 80 we can even run them
side.

Installing the ISAPI into IIS requires copying the dll file over to a directory that the
process can access as well as configuring IIS to load the ISAPI dll as an extension.
this article we will just use the DefaultAppPool and the wwwroot directory to run o
ISAPI dll, because we are deploying to a development machine. In a production
environment you may want to change the IIS configuration and create your own se
AppPool and website.

An Application Pool is a pool of resources within which an IIS application or websif

run and which can be configured for the websites and applications that it governs.

comes pre-configured with the DefaultAppPool that services the default website at
WWWroot.

Blaise Pascal Magazine 96 2021 @

Page 9/23

WEB SERVICE PART 4:

DEPLOY TO INTERNET INFORMATION SERVICES

(20) Copy the webServiceISAPI.d1l1l to the inetpub wwwroot folder. Windows m
block copying from network locations to the protected inetpub folder, so you
may need to copy it to an intermediate local folder (c:\TEMP) first

copy WebServiceISAPI.dll C:\inetpub\wwwroot

= | wwwroot

|
“ Home Share View
&«

v | C:hinetpub\wwwroot
Bl This PC ~ [Mame
J 2D Objects B iisstart.htm
I Desktop =l| nisstart.png
o 4 WebServicel SAP1.dII
£|
J Downloads
J‘.' Music
| Pictures
ﬂ Videos

i Local Disk (C:)

1 item selected 2.14 MB

3 items

| @ Search root
Date meodified Type
B/23/2021 12:37 PM Firefox HTML Doc...

3/2021 12:37 PM
/2021 5:05 PM

PMG File

21} Next we need to configure IIS to allow execution of this ISAPI extension
(2] Open Computer Management with a right-click on the start button

Blaise Pascal Magazine 96 2021

Disk Manageme
Computer Management
Windows PowerShell

Windows PowerShell (Admin)

Task Manager

Settings

File Explorer
Search

Run

Shut down or sign out

Desktop

Application extens...

Page 10/23

Size

1 KB
97 KB
2184 KB

=]

WEB SERVICE PART 4: Page 11/23
DEPLOY TO INTERNET INFORMATION SERVICES

23] In Computer Management select the Internet Information Services manager under
Services and Applications

A Computer Management - [m] X

File Action View Help

<% 2= H
‘A Computer Management (Local) €=) DESKTOP-8T638D1 » & ‘@‘ .
v |i} System Tools

() Task Scheduler Connections i Actions

@ Event Viewer ‘;J' DESKTOP-8T698D1 Home

22| Shared Folders s

LH B
& Local Users and Groups = L e

8 Filter: - e
(™) Performance s A IR i
A Device Manager _ @ Stop
v 5 Storage '}? 1 ;‘ @
& Di e = 4
= Services and Applications | Authentic... Compression DDefauIt d
4 Internet Information Services (IIS) Manager .> et o 7 it
‘\S‘E;\;:CCES ‘ L& 2 © Hep
a4 W L 404 | v 2 elp
e Directory Error Pages Handler
Browsing Mappings
= L
= i H =
HTTP Logging MIME Types
Respon
.

Modules Output Request

[Windows Features — O X

Turn Windows features on or off (7]

To turn a feature on, select its check box. To turn a feature
off, clear its check box. A filled box means that only part
of the feature is turned on.

- [m] Internet Information Services -

FTP S .

a0 e (23] We need to use ISAPI/CGI Restrictions to

7 (W] | Web Management Tools .

- [®] | World Wide Web Services configure our ISAPI, but as you can see th

- [m] | Application Developrnent Features icon for that is not available. This is becat

[] | .NET Extensibility 3.5 newer Windows and IIS versions ISAPI
L[| NET Exensibility 47 extensions are by default disabled and we
[| Application Initialization ..
0| ase to enable it first.
[] | ASP.NET35 (25) Go back to the Control Panel as we did e:
L] | ASP.NET47 and navigate to Turn Windows Features o
CGl In the Internet Information Services branc
) |154P| Extensions .
TR 5P Finers enable ISAPI extensions
[0 Server-Side Includes
[0 = WebSocket Protocol

+ M | Common HTTP Features
+ W] | Health and Diagnostics
[M] Perfermance Features

W [W] | Security v
£ >

Cancel

Blaise Pascal Magazine 96 2021 @

% DESKTOP-8T698D1 Home

& |
> %3 DESKTOP-8T69201

Filter: ~ ¥ Go - (gShow Al |

X2 9L B

Authentic... Compression Default Directory
Document Browsing

| 1SAPIand

Error Pages Handler HTTP i
Mappings Respen.. | CGl :
@ &= & ¥
Legging MIME Types Modules Output

Caching

(i) The CGl module is nat
installed. You can specify
CGl applications that are
allowed to run, but they will

net be able to run until the

CGl module is installed.

g ISAPI and CGl Restrictions

Use this feature to specify the ISAP| and CGl extensions that
can run on the Web server.

Group by: Mo Grouping b

Description Restriction Path

£

[T Fesurs view] 2 Content view

@ We configure only this single ISAPI dll ¢
Add [SAP| or CGI Restriction ? ot

ISAPI or CGI path:
|C:\inetpub\ummroot\WebServicelSAPI.dII

=
Description:

|Blaise Pascal Magazine 2021 Delphi Web Service |

[Allow extension path to execute

Blaise Pascal Magazine 96 2021

Edit Feature Settings...

you'll find it in the list

ﬁ ISAPI and CGI Restrictions

Use this feature to specify the 154P] and CGl extensions that can run on the Web
SENVET

Group by: Mo Grouping =

)
Description Restriction Path
{ Blaise Pascal Magazine... Allowed Chinetpublwwwroot\WebServicel SAPL.dII

& After adding the specific ISAPI to the allowed list we also need to configure
handler mappings for wwwroot

Select the Default Web Site and open the Handler Mappings with the icon.
Then right click on the ISAPI dll line and Edit Feature Permissions and enable
execution

> | 0 Handler Mappings
e qi DESKTDF_BT&QBD" Sxa Use this feature to specify the resources, such as DLLs and managed code, that handle
@ Application Pools responses for specific request types.
v (8] Sites
.4 Default Web Site Group by: State -
MName Path State Path Type
Enabled
ISAPI-dIl - _Enabled _File
OPTIONSVerbH Edit Feature Permissions 7 ® |Unspecified
TRACEVerbHan| Unspecified
StaticFile Permissicns: File or Folder
[Read
B4 Script
] Execute
< [oc || conca
(2] Features View Content View

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 14/23
DEPLOY TO INTERNET INFORMATION SERVICES

(32 By pre-selecting the Default Web Site we can configure
Handler Mappings just on this website. Handler mappings
on server-level will still have ISAPI-dIl as disabled

(33] Test if this works by requesting the WebServicelSAPI.dIl in a
browser http://localhost/WebServiceISAPi.dll

Web Server Application * + - O *

« & Q http:/flocalhost/WebServicel SAPLAII -

Web Server Application

The web service is now up and running as an ISAPI extension. Because the wel
service uses transient in-memory storage and ISAPI extensions are unloaded |
when not in use, our web service currently suffers from forgetfulness. We neec
reconfigure IIS to hold our web service in memory for a longer time period to |
able to use it properly.

(3] Select the Default Application Pool and open Recycling on the right-ha
side under Edit Application Pool

Connections -
e qg' Application Pools
] ks
z L
v Hj [EE‘_SKTOI_J-BTE%W Ly This page lets you view and manage the list of application pools on
i Application Pools the server. Application pools are associated with worker processes,
-[@] Sites contain one or more applications, and provide isclation among
different applications.

Filter: - Go EJ Show All | Group by: _ 2 Recycle

MName Status MET CLR V... Managed Pipel... Id Edit Application Pool
-t DefaultAppPool Started w40 Integrated A ing

and set it to 00:00 specific time

Edit Application Pool Recycling Settings

3 Recycling Conditions

Fixed Intervals

(| Regular time jntervals (in minutes): [] Fixed number of requests:

M Specific time(s):

Example: 8:00 PM,12:00 AM

Memory Based Maximums
[] Virtual memory usage (in KB): [] Private memory usage (in KB):

Previous Einish Cancel

& Thells manager will tran
as 12:00 AM depending on your international settings.
This is fine, its intended to Recycle at midnight, once every 24 hours

€ Test if it all works by reconfiguring the URL for the WebServiceClient application
in the EditURL text http://localhost/WebServiceISAPI.dll/KeyValue/0

(® Web Service Client - O X
http://localhost/WebServicelSAPL.dll/KeyValue/0 I GET I ‘ POST |

| PUT | DELETE
MemoBody

{"result”:["Zero"]}

38 You can now POST and PUT new values w e Delphi web y . If you clo
Delphi client and re-open a new web browser and request the POSTed value it will still be there. If this
does not work check the Recycling settings of the Default App Pool.

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 16/23
DEPLOY TO INTERNET INFORMATION SERVICES

Our web service is now up and running on a
server. The IIS web server can also be used to s
HTML and JavaScript pages. In our previous articl
a /JavaScript Web Action Handler that returned
and JavaScript code that in turn used the web se
return a number through a REST request on localh
It's a bit of a convoluted path. Now that we are
web server it makes much more sense to save thi
JavaScript page to a regular static html file ir
website and let the IIS web server handle t

39 Copy the HTML and JavaScript code from the /JavaScript Web Action Handler to
Notepad and change the embedded url to our new WebServicelSAPI. Don'’t forget to
remove the additional single quotes or just use the below text

<html>
<head><title>Call Number with JavaScript</title></head>
<body>Call Number with JavaScript <button onclick="getNumber () ">Get Number in
Console Log (view Ctrl-Shift-I).</button>
<script type="text/javascript">
function getNumber () {
let url = 'http://localhost/WebServiceISAPI.dll/Number';
fetch(url) .then(resp=> resp.json() .then (j=> console.log('\nNumber: ', j)));
}
</script>

</html>

Note that later on you may want to change the reference of localhost to your external IP or your DNS
registered domain name, as localhost only makes sense from within your development machine. For
now we need it to be localhost.

40) Save this file as default.htm in a folder \HTML and copy it to the IIS wwwroot folder
C:\inetpub\wwwroot\default.htm

Call Murmnber with JavaScript » + — O b4

5 | httpy/flocalhost — = @ 1S il e leeding
default.htm instead of
iisstart.htm, and the
default HTML page will be
displayed when visiting

Call Number with JavaScript
Get Number in Console Log (view Ctrl-Shift-T).

¥ 1O Inspector [J Conscle [Debugger L |jj LLLIE 4

localhost
I} oy (4] Test if it works by opening the
localhost url in a browser from
Errors Warnings Logs Info Debug C35 XHR Reguests inside your development
iR e machine. Remember to open

the Console Log in Firefox or
Chrome/Edge with Ctrl-Shift-I

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 17/23
DEPLOY TO INTERNET INFORMATION SERVICES

® This all looks fine and the button works and requests a new
Number from the new ISAPI web service
4] What if instead of using localhost we would use the url
http://127.0.0.1 ?
Call Mumber with JavaScript * + — O x
&« C | Q httpy//127.0.0.1 =21 » =

Call Number with JavaScript
Get Number in Console Log (view Ctrl-Shift-T).

45) The page opens just fine.But if you

i Call Mumber with JavaScript X |+ - O v
now click on the Get Number AL RTOST N, el
button we get an error in the
55 _
Console = C Q 127.0.0.1 » =

Call Number with JavaScript
Get Mumber in Console Log (view Ctrl-Shift-I).

W O Inspector [J Console O Debugger 2 0: ﬂ-_' ses X
0} 1t

Errors Warnings Logs Info Debug C55 XHR Requests
® m GET http://localhost/wWebService_ CORS Missing Allow Origin #

@ cross-origin Reguest Blocked: The Same Origin Policy disallows
reading the remote resource at http://localhost
SuebserviceISAPI. dlL/Number. (Reason: CORS header fAccess-Control-
Allow-0Origin® missing). [Learn More]

W

» | 20}

@

Let’s investigate why this is happening

We visit the default.htm web page with the IP address 127.0.0.1. When we then

click on the Get Number button, the JavaScript performs a XHR GET request from the
web page at address 127.0.0.1 to a web service at localhost. We know that these are
one and the same, but in fact, the localhost hostname and 127.0.0.1 are considered to
be different by the browser, so the browser handles it as a cross-site event. The browser
therefore asks the web service at localhost if this cross-site request should be allowed.

Because the web service does not indicate that such a Cross-Origin Request is allowed,
the request is blocked by the browser.

CORS Cross Origin Resource Sharing.

A web service can indicate access from other domains is allowed, by responding
with ‘Access-Control-Allow-Origin’ in the HTTP header.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 18/23
DEPLOY TO INTERNET INFORMATION SERVICES

The following image from wikipedia on Cross Origin Resource Sharing illustrates this path.

(JavaScript makes a) Is it a GET No
~cross-domain XHR call e or HEAD?

.

Isita No Path of added latency

Yes

Is the
content-type
Yes standaard?

Make OPTIONS call to
server with all custom
details

Are there
custom HTTP

Path of headers?

standard latency

Did server respond with
appropriate Access-Control
headers

ERROR

"Path of an XMLHttpRequest (XHR) through CORS." by Bluesmoon is licensed under CC-BY-SA 4.0

!

Make actual XHR

So what we need to do is have our web service allow CORS by adding the
appropriate Access-Control* headers.

(47] Open the WebModule unit of the project and add a BeforeDispatch
event-handler to the WebModule

Object Inspector
WebModulel TWebModulel

Properties Events
AfterDispatch
BeforeDispatch WebMeoduleBeforeDispatch
OnCreate
OnDestroy

OnException

@ Add CORS code to the WebModule BeforeDispatch event-handler,
to indicate that calling our web service from other domains is OK.

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 19/23
DEPLOY TO INTERNET INFORMATION SERVICES

procedure TWebModulel.WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
{Report back to the caller/ browser that we allow Cross Origin Resource Sharing (CORS) for all calling domains}
Response.SetCustomHeader('Access-Control-Allow-Origin','*");

if Trim(Request.GetFieldByName(

'Access-Control-Request-Headers')) <> " then

begin
Response.SetCustomHeader('Access-Control-Allow-Headers',

Request.GetFieldByName('Access-Control-Request-Headers'));

Handled := True;

end;

end;

The code above is the most permissive
response you can have for a web service.

If someone initiates a CORS preflight request, all of the Access-Control-Request-Headers
are allowed by simply copying them over to the Access-Control-Allow-Headers in the
response. If a client asks if POST is supported, we indicate that it is, same for any of the
other HTTP methods. We could also limit this a bit, to indicate that we support just a limited
subset of HTTP methods by using Access-Control-Allow-Methods:

POST, PUT, GET, DELETE.

In the same code snippet, by setting Access-Control-Allow-Origin to ‘*”, we are allowing
CORS calls from all origins. You could limit this to be less permissive by setting specific
domain names in Access-Control-Allow-Origin.

If you start using your Delphi web service from other client platforms or browsers you may
also run into caching issues. To prevent a web service consumer from caching previously
retrieved values for the idempotent and cacheable HTTP GET command, you can set some
headers in the web service to inform the web service consumer that it should not cache
anything.

49, Add these Custom Headers to the code in the WebModuleBeforeDispatch handler
to request no-caching

{ Set additional headers to ask client-side to not cache locally
Cache-Control=no-cache, no-store, must-revalidate
Pragma=no-cache
Expires=0 }

Response.CustomHeaders.AddPair('Cache’, 'no-cache, no-store, must-revalidate');

Response.CustomHeaders.AddPair('‘Pragma’, 'no-cache');
Response.CustomHeaders.AddPair('Expires', '0");

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4: Page 20/23
DEPLOY TO INTERNET INFORMATION SERVICES

These added headers ask other web service consumers to always retrieve new values
for each GET request. This is not entirely foolproof though. You may run into caching
proxy servers that choose to ignore these headers, in which case you would need to

take additional steps. One of the tricks commonly used is to add a dummy parameter to
the URL that the client then changes with each request. This dummy parameter can be
ignored by the web services server, but any in-between caching proxy will see this as a
completely new request and not serve the result from its cache. One example:

{This URL is different}
http://localhost:8080/KeyValue?key=0&unique=random4?2

{each time}
http://localhost:8080/KeyValue?key=0&unique=random84

{but gets the same value from the key value store}

50) We are now ready to deploy the next version of our ISAPT d11.
To update the dll, recompile the ISAPI library in Delphi and perform the following
steps to replace the existing ISAPI d11
(51} Open the IIS manager by using the Search field next to the Start button. Search for “inetmgr”

52) Open the Application Pools setting, select the Default Application Pool, right-click
and choose Recycle.
By manually recycling the Application Pool of the ISAPI dll it will be unloaded from
memory and you will be able to replace the dll file on disk

File View Help

Connections

H"' Application Pools

v -85 DESKTOP-8T692D1 (DESK

: e This page lets you view and manage the list of ap, .catic
w2t Application Pools

with worker processes, contain one or more application:

@] Sites
Filter: - G0 & Show Al
Mame h Status MET CLR V... Mana
{4 Defaul™ i " T

Add Application Pool..

L=

Set Application Pool Defaults...

B Stop

Recycle...

Basic Settings...
Recycling...

Advanced Settings...

Blaise Pascal Magazine 96 2021 @

WEB SERVICE PART 4:

DEPLOY TO INTERNET INFORMATION SERVICES
®

Then using the File Explorer remove the existing WebServiceISAPI.d1ll
from wwwroot and copy the new version of this dll to the same location.

If you are unable to replace the dll it may still be in use, you can release it
by stopping and starting the IIS web server.

2

If we now try it again with http://127.0.0.1

it works OK
Call Mumber with JavaScript * + — O x
&« C | Q hitp127.0.0.1| =1 B =
Call Number with JavaScript
Get Number in Console Log (view Ctrl-Shift-I).
o O Inspector] Console > Debugger > |j__| LLLI 4
Errors Warnings Logs Info Debug C55 XHR Requests
B

1 bServiceISAPI

WebserviceIs I.d_ [HTTP/1.1 oK ems] A
Number: 27

127.8.8.1:7:56

W

@

With these modifications
to the web service CORS preflight our web

service will be accessible from external domains.

Note that the localhost reference in the JavaScript
snippet only makes sense from within the

development machine. If you want to access the
default.htm from outside of the development
machine you need to change it to the external IP or

hostname. For a production machine you'd change
it to the domain name.

The web service is now running under IIS and the

coding is done, but there are some additional tips
and hints that I'd like to share.

When we installed IIS on the development
machine it also opened up port 80 (HTTP) and
port 443 (HTTPS) for all types of networks
(Private, Public, Domain). When you visit a
location with public internet, such as an airport,
you may not want to have these IIS ports open.
Of course you can easily change these firewall

rules, and close these ports, using the Advanced
Firewall configuration.

Blaise Pascal Magazine 96 2021

@

Page 21/23

WEB SERVICE PART 4: Page 22/23
DEPLOY TO INTERNET INFORMATION SERVICES

g Windows Defender Firewall with Advanced Security — | X

File Action View Help
e rnE = HE

&3 Inbound Rules b ~
£% Outbound Rules

:.Ll, Connection Security % World Wide Web Senaces (HTTP Traffic-In)

K| Monitoring v || & World Wide Web Services (HTTPS Traffic-In) o,
< > < >

Actions

Inboun... &

w1 Ne.
F Filt.. »

L=]

L 5

But this does require some mouse clicks and there is an easier way of
doing this using PowerShell. Right-click on the start menu and start
Windows PowerShell (Admin).

@ Get a list of the two firewall rules for IIS with this command
Get-NetFirewallRule -Name "IIS*"“

EN Administrator; Windows PowerShell — O *

layName : 1d Wide er (Traffic-In)
ription inbound rule t traffic for

rnet Information S
layGroup r i es (HTTP)
firewallapi.dll,-38

Enabled

56, Verify that you see just two rules, for port 80 and 443, both for IIS

(57) Next we do a Whatlf, to see if disabling these rules will only affect these two rules
Set-NetFirewallRule -Name "IIS*" -Enabled False -WhatIf

EN Administrator: Windows PowerShell — O >
Set-MetFirewallRule - False
allRule Displ ame ; e Role-HTTPS-In-TCP
e-HTTP-In-TCP

58 If that looks good then execute the actual disable command
Set-NetFirewallRule -Name "IIS*" -Enabled False

EN Administrator: Windows PowerShell — O >

Set-NetFirewallRule

WEB SERVICE PART 4: Page 23/23
DEPLOY TO INTERNET INFORMATION SERVICES

D Now test if IIS can still be reached on your machine from another
machine using your external IP address. It should now be blocked.
Note that your localhost will remain operational, as it's only blocking
external connections.

@ Unblocking is easy as well, just use the -Enabled True command
Set-NetFirewallRule -Name "IIS*" -Enabled True

EN Administrator: Windows PowerShell — O >

@ And IIS can again be reached from other machines.

While you are actively developing and testing with Delphi on IS on your d
machine or laptop you can easily enable the firewall rule for full access. In
cases you can disable it and have IIS safely hidden behind the firewall.

In this deployment we chose to host our ISAPI dll in the Default Website a
Default Application Pool, which is fine for a development machine. Howe
deployment on a production environment you will probably create a new
a new Application Pool for each ISAPI dll. This makes it easier to manage «
extension as well as more secure. Additionally you can shorten the URL tc
WebServicelSAPI.dIl with an URL Rewrite, which makes it both easier to a
web service as well as obscures the actual ISAPI dll filename. For producti
also need to harden your IIS installation, making it even more secure.

In our next article we’ll be deploying our web service to Apache on Linux.

Source code for this article can be downloaded here:
https://www.blaisepascalmagazine.eu/your-downloads/

Blaise Pascal Magazine 96 2021 @

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	WebService_2.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

	WebService_3.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

	WebService_4.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

